To study the development and function of “natural-arising” T regulatory (nTreg) cells, we developed a novel nTreg model on pure nonobese diabetic background using epigenetic reprogramming via somatic cell nuclear transfer. On RAG1-deficient background, we found that monoclonal FoxP3+ CD4+ Treg cells developed in the thymus in the absence of other T cells. Adoptive transfer experiments revealed that the thymic niche is not a limiting factor in nTreg development. In addition, we showed that the T-cell receptor (TCR) ß-chain of our nTreg model was not only sufficient to bias T-cell development toward the CD4 lineage, but we also demonstrated that this TCR ß-chain was able to provide stronger TCR signals. This TCR-ß–driven mechanism would thus unify former per se contradicting hypotheses of TCR-dependent and -independent nTreg development. Strikingly, peripheral FoxP3- CD4+ T cells expressing the same TCR as this somatic cell nuclear transfer nTreg model had a reduced capability to differentiate into Th1 cells but were poised to differentiate better into induced nTreg cells, both in vitro and in vivo, representing a novel peripheral precursor subset of nTreg cells to which we refer to as pre-nTreg cells. Overall design: We performed RNA-Seq analysis to determine the transcriptional differences between monoclonal FoxP3GFP-positive and -negative CD4+ T cells from NOD.TCRab.FoxP3GFP.Rag-/- and compared it with polyclonal FoxP3GFP-positive and -negative CD4+ T cells from NOD.FoxP3GFP mice
Nuclear transfer nTreg model reveals fate-determining TCR-β and novel peripheral nTreg precursors.
No sample metadata fields
View SamplesMicroarray analysis of microglia in a mouse model of amyotrophic lateral sclerosis identified the dysregulation of Brca1.
Brca1 is expressed in human microglia and is dysregulated in human and animal model of ALS.
Specimen part
View SamplesExpression of germ cell nuclear factor (GCNF, Nr6a1), an orphan member of the nuclear receptor gene family of transcription factors, during gastrulation and neurulation is critical for normal embryogenesis in mice. Gcnf represses the expression of the POU domain transcription factor Oct4 (Pou5f1) during mouse post-implantation development. Although Gcnf expression is not critical for the embryonic segregation of the germ cell lineage, we found that sexually dimorphic expression of Gcnf in germ cells correlates with the expression of pluripotency-associated genes, such as Oct4, Sox2, and Nanog, as well as the early meiotic marker gene Stra8. To elucidate the role of Gcnf during mouse germ cell differentiation, we generated an ex vivo Gcnf-knockdown model in combination with a regulated CreLox mutation of Gcnf. Lack of Gcnf impairs normal spermatogenesis and oogenesis in vivo, as well as the derivation of germ cells from embryonic stem cells (ESCs) in vitro. Inactivation of the Gcnf gene in vivo leads to loss of repression of Oct4 expression in both male and female gonads.
Germ cell nuclear factor regulates gametogenesis in developing gonads.
Specimen part
View SamplesAPRIL (TNFSF13) is a ligand of the TNF superfamily which binds to two receptors, BCMA and TACI. We have found that APRIL and its receptor BCMA are specifically enhanced in hepatocellular carcinoma, as compared to non-cancerous liver tissue. We further identified that HepG2 cells present the same ligand/receptor pattern as human hepatocellular carcinomas. We investigated the role of APRIL in HepG2 gene expression in a time course study.
APRIL binding to BCMA activates a JNK2-FOXO3-GADD45 pathway and induces a G2/M cell growth arrest in liver cells.
Specimen part, Cell line
View SamplesThe role of Striatin Interacting Protein 2 (Strip2) in differentiation of embryonic stem cells (ESCs) is still under debate. Strip2 silenced (KD) ESCs were differentiated for 4, 8, 12, and 16 days. We show that Strip2 is distributed in the perinucleus or nuclei of wild type (WT) undifferentiated ESCs, but is localized in high-density nuclear bodies in differentiated cells. CellNet analysis of microarray gene expression data for KD and scrambled control (SCR) embryoid bodies (EBs), as well as immunostainings of key pluripotent factors, demonstrated that KD ESCs remain undifferentiated. This occurs even in 16-day old EBs, which possessed a high tumorigenic potential. Correlated with very high expression levels of epigenetic regulator genes, Hat1 and Dnmt3, enzymatic activities of the histone acetyltransferase type B (HAT1) and DNA (cytosine-5)-methyltransferase 3 beta (DNMT3b) were higher in differentiated 16-day old KD EBs than in SCR or WT EBs. The expression levels of let-7, 290 and 302 microRNA families were opposed in KD ESCs, while KD EBs had levels comparable to WT and SCR ESCs during differentiation. This demonstrates that Strip2 is critical to the onset of differentiation, regulating expression of epigenetic regulators, HAT1 and DNMT3b, as well as microRNAs involved in pluripotency.
STRIP2 Is Indispensable for the Onset of Embryonic Stem Cell Differentiation.
Sex, Specimen part
View SamplesPluripotency is the differentiation capacity of particular cells exhibited in the early embryo in vivo and embryonic stem (ES) cells have been shown to originate from the inner cell mass (ICM) of an E3.5 blastocyst. Although the potential for ES cells to differentiate into the three germ layers is equated to ICM cells, they differ in the ability to maintain the capacity for self-renewal. Despite several studies on the maintenance of ES cells in the ground state of pluripotency, the precise mechanism of conversion from the ICM to the ES cell remains unclear. Here , we have examined the cell characteristics and expression profile within the intermediate stages of ES cell derivation from the ICM. Gene clustering and ontology (GO) analyses showed a significant change in the expression of epigenetic modifiers and DNA methylation-related genes in the intermediate stages. We have proposed that an epithelial-to-mesenchymal transition (EMT) blockage is required during derivation of mouse ES cells from E3.5 blastocysts. This study suggests a novel mechanistic insight into ES cell derivation and provides a time-course transcriptome profiling resource for the dissection of gene regulatory networks that underlie the transition from ICM to ES cells.
Blockage of the Epithelial-to-Mesenchymal Transition Is Required for Embryonic Stem Cell Derivation.
No sample metadata fields
View SamplesIn this study we have analyzed the global gene expression of nave mouse embryonic stem cells in different culture conditions including R2i (PD0325901+SB431542), 2i (PD0325901+CHIR99021), and also PD0325901+LIF and SB431542+LIF to show the similarities and differences between the conditions in maintaining pluripotency.
Inhibition of TGFβ signaling promotes ground state pluripotency.
Specimen part, Cell line
View SamplesGoals of the Study:
Short-term arginine deprivation results in large-scale modulation of hepatic gene expression in both normal and tumor cells: microarray bioinformatic analysis.
No sample metadata fields
View SamplesHigh throughput sequencing of poly-A RNA Overall design: Two-condition experiment: Control- and Chronophin shRNA (CIN/PDXP) in glioblastoma stem-like cells
Chronophin regulates active vitamin B6 levels and transcriptomic features of glioblastoma cell lines cultured under non-adherent, serum-free conditions.
Disease, Cell line, Subject
View SamplesFrankincense oil is prepared from aromatic hardened wood resin obtained by tapping Boswellia trees. For thousands of years, it has been important both socially and economically as an ingredient in incense and perfumes. Frankincense oil is a botanical oil distillate made from fermented plants that contains boswellic acid, a component known to have anti-neoplastic properties. We evaluated frankincense oil-induced cytotoxicity in bladder cancer cells. With a window of concentration, frankincense oil suppressed cell viability and induced cytotoxicity in bladder transitional carcinoma J82 cells but not normal bladder urothelial UROtsa cells immortalized with SV40 large T antigen. However, frankincense oil-induced J82 cell death did not result in DNA fragmentation. Microarray and bioinformatics analysis confirmed that frankincense oil activated cell cycle arrest, suppressed cell proliferation, and activated apoptosis in J82 cells through a series of potential pathways. These finding suggest that bladder cancer can be treated through intravesical administration of pharmaceutical agents similar to direct application on melanoma.
Frankincense oil derived from Boswellia carteri induces tumor cell specific cytotoxicity.
No sample metadata fields
View Samples