Analysis of wig-1 pathways via suppression of Wig-1 by antisense oligonucleotides
Genomic analysis of wig-1 pathways.
Specimen part, Treatment
View SamplesOct4, Sox2, Klf4, and cMyc (OSKM) reprogram somatic cells to pluripotency. To gain a mechanistic understanding of their function, we mapped OSKM-binding, stage-specific transcription-factors (TFs), and chromatin-states in discrete reprogramming stages and performed loss- and gain-of-function experiments. We found that early in reprogramming OSK extensively bind somatic-enhancers and initiate their decommissioning by recruiting Hdac1. Concurrently, OSK engage other sites, including specific pluripotency-enhancers, and induce the relocation of somatic TFs to these sites and away from somatic-enhancers, extending somatic-enhancer decommissioning genome-wide. Pluripotency-enhancer selection early in reprogramming occurs predominantly at sites with high OSK-motif densities and requires collaborative binding by OSK. Most pluripotency-enhancers are selected later and occupied by OS and stage-specific-TFs like Esrrb. Overexpression of stage-specific-TFs influences reprogramming efficiency by changing OSK-occupancy, somatic-enhancer decommissioning, and pluripotency-enhancer selection. We propose that collaborative interactions among OSK and with stage-specific-TFs direct both somatic-enhancer decommissioning and pluripotency-enhancer selection, which drives the enhancer reorganization underlying reprogramming Overall design: RNA-seq
Cooperative Binding of Transcription Factors Orchestrates Reprogramming.
Specimen part, Cell line, Subject
View SamplesDeep sequencing has revealed that epigenetic modifiers are the most mutated genes in acute myeloid leukemia (AML). Thus, elucidating epigenetic dysregulation in AML is crucial to understand disease mechanisms. Here, we demonstrate that Metal Response Element Binding Transcription Factor 2/Polycomblike 2 (MTF2/PCL2) plays a fundamental role in the Polycomb repressive complex 2 (PRC2) and that its loss elicits an altered epigenetic state underlying refractory AML. Unbiased systems analyses identified the loss of MTF2-PRC2 repression of MDM2 as central to, and therefore a biomarker for, refractory AML. Thus, immature MTF2- deficient CD34+CD38- cells overexpress MDM2, thereby inhibiting p53 that leads to chemoresistance due to defects in cell cycle regulation and apoptosis. Targeting this dysregulated signaling pathway by MTF2 overexpression or MDM2 inhibitors sensitized refractory patient leukemic cells to induction chemotherapeutics and prevented relapse in AML patient-derived xenograft (PDX) mice. Therefore, we have uncovered a direct epigenetic mechanism by which MTF2 functions as a tumor suppressor required for AML chemotherapeutic sensitivity and identified a potential therapeutic strategy to treat refractory AML. Overall design: Fold change analysis between treatment and control
Targeting the MTF2-MDM2 Axis Sensitizes Refractory Acute Myeloid Leukemia to Chemotherapy.
Specimen part, Subject
View SamplesNaïve human embryonic stem cells (hESCs) can be derived from primed hESCs or directly from blastocysts, but their X-chromosome state has remained unresolved. We found that the inactive X-chromosome (Xi) of primed hESCs was reactivated in naïve culture conditions. Similar to cells of the blastocyst, resulting naive cells exhibited two active X-chromosomes with XIST expression and chromosome-wide transcriptional dampening, and initiated XIST-mediated X-inactivation upon differentiation. Both establishment and exit from the naïve state (differentiation) happened via an XIST-negative XaXa intermediate. Together, these findings identify a cell culture system for functionally exploring the two X-chromosome dosage compensation processes in early human development: X-dampening and X-inactivation. Furthermore, the naïve state reset Xi abnormalities of primed hESCs, providing cells better suited for downstream applications. However, naïve hESCs displayed differences to the embryo because XIST expression was predominantly mono-allelic instead of bi-allelic, and X-inactivation was non-random, indicating the need for further culture improvement. Overall design: Differentiated naïve human embryonic stem cells and naïve human embryonic stem cells at different passages (Exp1 for late passage, Exp2 for early passage) were subjected to single cell RNA sequencing by the Fluidigm C1 Single-Cell Auto Prep System.
Human Naive Pluripotent Stem Cells Model X Chromosome Dampening and X Inactivation.
Specimen part, Subject
View SamplesGene expression analysis showed that LncPHx2 depletion resulted in upregulation of mRNAs encoding proteins known to promote cell proliferation, including MCM components, DNA polymerases, histone proteins, and transcription factors Overall design: RNA-seq analysis was performed on livers of mice subjected to PHx or to sham surgery after treatment with LncPHx2_ASO1 or with PBS. Gene expression profiling was done at 48 hours post-surgery
Partial Hepatectomy Induced Long Noncoding RNA Inhibits Hepatocyte Proliferation during Liver Regeneration.
No sample metadata fields
View SamplesHuman embryonic stem cells (hESC) display substantial heterogeneity in gene expression, implying the existence of discrete substates within the stem cell compartment. To determine whether these substates impact fate decisions of hESC we used a GFP reporter line to investigate the properties of fractions of putative undifferentiated cells defined by their differential expression of the endoderm transcription factor, GATA6, together with the hESC surface marker, SSEA3. By single cell cloning, we confirmed that substates characterized by expression of GATA6 and SSEA3 include pluripotent stem cells capable of long term self-renewal. When clonal stem cell colonies were formed from GATA6-positive and GATA6-negative cells, more of those derived from GATA6-positive cells contained spontaneously differentiated endoderm cells than similar colonies derived from the GATA6-negative cells. We characterized these discrete cellular states using single cell transcriptomic analysis, identifying a potential role for SOX17 in the establishment of the endoderm biased stem cell state. Overall design: Examination of 4 different cell substates within one human embryonic stem cell line as determine by the expression status of GATA6 and SSEA3
Identification and Single-Cell Functional Characterization of an Endodermally Biased Pluripotent Substate in Human Embryonic Stem Cells.
Specimen part, Subject
View SamplesFrankincense oil is prepared from aromatic hardened wood resin obtained by tapping Boswellia trees. For thousands of years, it has been important both socially and economically as an ingredient in incense and perfumes. Frankincense oil is a botanical oil distillate made from fermented plants that contains boswellic acid, a component known to have anti-neoplastic properties. We evaluated frankincense oil-induced cytotoxicity in bladder cancer cells. With a window of concentration, frankincense oil suppressed cell viability and induced cytotoxicity in bladder transitional carcinoma J82 cells but not normal bladder urothelial UROtsa cells immortalized with SV40 large T antigen. However, frankincense oil-induced J82 cell death did not result in DNA fragmentation. Microarray and bioinformatics analysis confirmed that frankincense oil activated cell cycle arrest, suppressed cell proliferation, and activated apoptosis in J82 cells through a series of potential pathways. These finding suggest that bladder cancer can be treated through intravesical administration of pharmaceutical agents similar to direct application on melanoma.
Frankincense oil derived from Boswellia carteri induces tumor cell specific cytotoxicity.
No sample metadata fields
View SamplesDefects in neutrophil number and survival are common to both hematologic disorders and chronic inflammatory diseases. At sites of inflammation, neutrophils respond to multiple signals that activate protein kinase A (PKA) signalling, which positively regulates neutrophil survival. We aimed to study the transcriptional responses to several stimuli in human neutrophils.
NR4A orphan nuclear receptor family members, NR4A2 and NR4A3, regulate neutrophil number and survival.
Specimen part
View SamplesNeutrophils were isolated form peripheral blood of wildtype and Phd3 null mice, cultured for 4 hours in hypoxia (3% O2) and micro array analysis performed
Prolyl hydroxylase 3 (PHD3) is essential for hypoxic regulation of neutrophilic inflammation in humans and mice.
Specimen part, Treatment
View SamplesWe have identified candidate genes from the Feml2 QTL influencing femur length through allele specific expression analysis of growth plates in C57BL/6J x CAST/EiJ F1 hybrids. This work provides the foundation to identify novel genes affecting bone geometry. Overall design: total RNA sequencing in 7 male C57BL/6JxCAST F1s
Genetic Dissection of a QTL Affecting Bone Geometry.
Sex, Age, Specimen part, Cell line, Subject
View Samples