Bone marrow stromal cells (BMSCs) were isolated from the femora and tibiae of irtTA-GBD*-TAg transgenic mice. Using cellular cloning we established skeletal progenitors with distinct differentiation properties and analysed their transcriptome. Unipotent osteogenic and adipogenic cells expressed specific transcriptional programs whereas bipotent clones combined expression of those genes and did not show a unique signature. Overall design: Expression profiling (RNA-seq) of two independent clones from different mice representing skeletal progenitors with the following characteristics: tripotent clones (Osteogenic, Adipogenic, Chondrogenic = OAC1 and OAC2); bipotent clones (Osteogenic, Adipogenic = OA1 and OA2); unipotent clones (Osteogenic = O1 and O2; Adipogenic = A1 and A2). Further, we prepared and sequenced pools of several other clones from these two mice, with the following properties: tripotent clones (Osteogenic, Adipogenic, Chondrogenic = OAC3); bipotent clones (Osteogenic, Adipogenic = OA3; Osteogenic, Chondrogenic = OC3; Adipogenic, Chondrogenic = AC3); unipotent clones (Osteogenic = O3; Adipogenic = A3).
Clonal Analysis Delineates Transcriptional Programs of Osteogenic and Adipogenic Lineages of Adult Mouse Skeletal Progenitors.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cancer stemness in Wnt-driven mammary tumorigenesis.
No sample metadata fields
View SamplesThe Wnt/beta-catenin signalling pathway plays a central role in mammary stem cell homeostasis and in breast cancer. We employed the CD29hiCD24+ cell surface antigens to identify a subpopulation of mammary CSCs from Apc1572T/+, a mouse model for metaplastic breast adenocarcinoma, a subtype of triple-negative breast cancer in man. The MaCSCs are capable of recapitulating tumorigenesis when transplanted at low multiplicities in vivo, and of forming self-renewing organoids in vitro. Expression profiling of the different subpopulations sorted from normal and neoplastic mammary tissues revealed that the normal stem cell compartment is more similar to tumor cells than to their own differentiated progenies. Accordingly, Wnt signaling was found to be activated in the subpopulation encompassing normal mammary stem cells, though to a lesser degree than in the tumor cells. By comparing normal with cancer mouse mammary compartments, we were able to derive a MaCSC-specific signature composed of human orthologous genes able to predict poor survival, relapse and distant metastasis in human breast cancer. Finally, upon intravenous injection, only MaCSCs among the different tumor cell subpopulations are able to form metastatic lesions in a broad spectrum of anatomical sites. Overall, our data indicate that constitutive Wnt signaling activation interferes with mammary stem cell homeostasis leading to metaplasia and basal-like adenocarcinomas.
Cancer stemness in Wnt-driven mammary tumorigenesis.
No sample metadata fields
View SamplesConstitutive activation of the Wnt pathway leads to adenoma formation, an obligatory step towards intestinal cancer. In view of the established role of Wnt in regulating stemness, we attempted the isolation of cancer stem cells (CSCs) from Apc- and Apc/KRAS-mutant intestinal tumours. Whereas CSCs are present in malignant Apc/KRASmutant carcinomas, they appear to be very rare (<10-6) in the benign Apcmutant adenomas. In contrast, the Lin-CD24hiCD29+ subpopulation of adenocarcinoma cells appear to be enriched in CSCs with increased levels of active -catenin. Expression profiling analysis of the CSC-enriched subpopulation confirmed their enhanced Wnt activity and revealed additional differential expression of other signalling pathways, growth factor binding proteins, and extracellular matrix components. As expected, genes characteristic of the Paneth cell lineage (e.g. defensins) are co-expressed together with stem cell genes (e.g. Lgr5) within the CSC-enriched subpopulation. This is of interest as it may indicate a cancer stem cell niche role for tumor-derived Paneth-like cells, similar to their role in supporting Lgr5+ stem cells in the normal intestinal crypt. Overall, our results indicate that oncogenic KRAS activation in Apc-driven tumours results in the expansion of the CSCs compartment by increasing b-catenin intracellular stabilization.
Cancer stemness in Apc- vs. Apc/KRAS-driven intestinal tumorigenesis.
Specimen part
View SamplesThe identity of cells that establish the hematopoietic microenvironment (HME) in human bone marrow (BM), and of skeletal ("mesenchymal") stem cells (SSCs) found in BM stroma, have long remained elusive. We show that MCAM/CD146-expressing, subendothelial cells in human BM stroma are both the self-renewing SSCs and the cells that transfer the HME at heterotopic sites upon transplantation.
Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment.
No sample metadata fields
View SamplesDU145 prostate cancer cells were treated with 25 ng/ml hepatocyte growth factor (HGF) or vehicle for 2, 8, or 24 hours. HGF stimulates the cMET protein, a tyrosine kinase transmembrane protein.
Activation of c-MET induces a stem-like phenotype in human prostate cancer.
Cell line, Time
View SamplesHistone deacetylase (HDAC) inhibitors are widely utilized in hematopoietic malignance therapy; nevertheless, little is currently known concerning their effects on normal myelopoiesis. In order to investigate a putative interference of HDAC inhibitors in myeloid commitment of hematopoietic stem/progenitor cells (HSPCs) we treated CD34+ cells with valproic acid (VPA). Moreover, we investigate changes in gene expression induced by VPA treatment on HSPCs, by means of microarray analysis in VPA treated and untreated (CTR) CD34+ cells.
Valproic acid triggers erythro/megakaryocyte lineage decision through induction of GFI1B and MLLT3 expression.
Specimen part, Treatment
View SamplesA widely shared view reads that 'MSCs' are ubiquitous in human connective tissues, can be defined by a common in vitro phenotype, share a skeletogenic potential as assessed by in vitro differentiation assays, and coincide with the ubiquitous 'pericytes.' Using stringent in vivo differentiation assays and transcriptome analysis, we show here that human cell populations from different anatomical sources, which would all be regarded as 'MSCs' based on these criteria and assumptions, actually differ widely in their transcriptomic signature and in vivo differentiation potential. In contrast, they share the capacity to guide the assembly of functional microvessels in vivo, regardless of their anatomical source, or in situ identity as perivascular or circulating cells. This analysis further reveals that muscle 'pericytes,' which are not spontaneously osteo-chondrogenic as previously claimed, may indeed coincide with an ectopic perivascular subset of committed myogenic cells similar to satellite cells. Cord blood-derived stromal cells, on the other hand, display the unique capacity to form cartilage in vivo spontaneously, in addition to an assayable osteogenic capacity. These data suggest the need to revise current misconceptions on the origin and function of so-called 'MSCs,' with important applicative implications. The data also support the view that rather than a uniform class of 'MSCs,' different mesoderm derivatives include distinct classes of tissue-specific committed progenitors, likely of different developmental origin.
No Identical "Mesenchymal Stem Cells" at Different Times and Sites: Human Committed Progenitors of Distinct Origin and Differentiation Potential Are Incorporated as Adventitial Cells in Microvessels.
Specimen part
View SamplesTransplantation of GABAergic interneurons (INs) can sustain long-standing benefits in animal models of epilepsy and other neurological disorders. In a therapeutic perspective, a renewable source of functional GABAergic INs is needed. Here, we identified five factors (Foxg1, Sox2, Ascl1, Dlx5 and Lhx6) able to convert fibroblasts directly into induced GABAergic INs (iGABA-INs), displaying the molecular signature of telencephalic INs. The selected factors recapitulate in fibroblasts the activation of transcriptional networks required for the specification of GABAergic fate during telencephalon development. iGABA-INs exhibited progressively maturing firing patterns comparable to those of cortical INs, had synaptic currents and released GABA. Importantly, upon grafting in the hippocampus, iGABA-INs survived, matured and their optogenetic stimulation triggered GABAergic transmission and inhibited the activity of connected granule cells. The five factors also converted human cells into functional GABAergic neurons. These properties define iGABA-INs as a promising tool for disease modeling and cell-based therapeutic approaches. Overall design: Comparison of iGABA-INs transcriptional profile with those of starting fibroblasts and GAD67-GFP+ cortical interneurons.
Rapid Conversion of Fibroblasts into Functional Forebrain GABAergic Interneurons by Direct Genetic Reprogramming.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cell-type-specific control of enhancer activity by H3K9 trimethylation.
Specimen part
View Samples