Plants respond to environmental stresses by altering transcription of genes involved in the response. The chromatin modifier ATX1 influences gene expression and factors that modulate ATX1 activity would affect indirectly the expression of ATX1-regulated genes. Here, we demonstrate that dehydration is such a factor indicating that ATX1 is involved in the plants response to drought. In addition, we show that a hitherto unknown Arabidopsis gene, At3g10550, encodes MYO1, a phosphoinositide 3-phosphatase related to the animal myotubularins. By a functional genomics approach, we show that ATX1 and MYO1 participate in overlapping drought-response pathways. The shared set of genes, representing the ultimate targets of an ATX1-MYO1 signaling mechanism responding to drought, provided insights into the relationship of the epigenetic factor and the lipid phosphatase from the other end of the response pathway.
The Arabidopsis chromatin modifier ATX1, the myotubularin-like AtMTM and the response to drought.
No sample metadata fields
View SamplesExpression analysis of wild-type SAOS cells and SAOS cells transiently transfected with RB, SMYD2, or RB and SMYD2.
Methylation of the retinoblastoma tumor suppressor by SMYD2.
Specimen part, Cell line
View SamplesThe retinoblastoma cell cycle regulator pRb and the two related proteins p107 and p130 are thought to suppress cancer development both by inhibiting the G1/S transition of the cell cycle in response to growth-arrest signals and by promoting cellular differentiation. Here, we investigated the phenotype of Rb family triple knock-out (TKO) embryonic stem cells as they differentiate in vivo and in culture. Confirming the central role of the Rb gene family in cell cycle progression, TKO mouse embryos did not survive past mid-gestation and differentiating TKO cells displayed increased proliferation and cell death. However, patterning and cell fate determination were largely unaffected in these TKO embryos. Furthermore, a number of TKO cells, including in the neural lineage, were able to exit the cell cycle in G1 and terminally differentiate. This ability of Rb family TKO cells to undergo cell cycle arrest was associated with the repression of target genes for the E2F6 transcription factor, uncovering a pRb-independent control of the G1/S transition of the cell cycle. These results show that the Rb gene family is required for proper embryonic development but is not absolutely essential to induce G1 arrest and differentiation in certain lineages.
G1 arrest and differentiation can occur independently of Rb family function.
No sample metadata fields
View SamplesStable knockdown of NET1, a RhoGEF, was achieved in AGS Gastric Cancer cells. This gene is known to be overexpressed in the disease.
A functional and transcriptomic analysis of NET1 bioactivity in gastric cancer.
Cell line
View SamplesTGFbeta is the major cytokine driver of fibrosis in the kidney and other tissue. Epithelial-mesenchymal transition has been postulated to contibrute to renal fibrosis in diseases such as diabetic nephropathy.
Next-generation sequencing identifies TGF-β1-associated gene expression profiles in renal epithelial cells reiterated in human diabetic nephropathy.
Cell line, Time
View SamplesTGF-beta1 is the major cytokine driver of fibrotic scarring observed in diabetic nephropathy and other fibrosis-related diseases. RNA-sequencing offers the potential for more sensitive assessment of the TGF-ß1-driven transcriptome. Overall design: There were two treatment groups: vehicle, 48 hr TGFb1. Each treatment was carried out in triplicate. Upon quality control assessment, one TGFß1 treated sample was excluded from further analyses, leaving 3 unstimulated and 2 TGFß1 samples.
Next-generation sequencing identifies TGF-β1-associated gene expression profiles in renal epithelial cells reiterated in human diabetic nephropathy.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The MuvB complex sequentially recruits B-Myb and FoxM1 to promote mitotic gene expression.
Cell line
View SamplesThe cascade of molecular events involved in mammalian sex determination has been shown to involve the SRY gene, but specific downstream events have eluded researchers for decades. The current study identifies one of the first direct downstream targets of the male sex-determining factor SRY as the basic-helix-loop-helix (bHLH) transcription factor TCF21. SRY was found to directly associate with the Tcf21 promoter SRY/SOX9 response element both in vitro and in vivo during male sex determination. TCF21 was found to promote an in vitro sex reversal of embryonic ovarian cells to promote precursor Sertoli cell differentiation. Therefore, SRY acts directly on the Tcf21 promoter to, in part, initiate a cascade of events associated with Sertoli cell differentiation and embryonic testis development.
Basic helix-loop-helix transcription factor TCF21 is a downstream target of the male sex determining gene SRY.
Sex, Specimen part, Treatment
View SamplesRetinal damage causes proliferation of Muller glia, but the degree of proliferation depends on mouse strains. Muller glial proliferation was significantly promoted by the addition of GSK3 inhibitor in 129, but not in B6. We used retinal explant culture as a model for retinal damage which caused preferential photoreceptor death in a few days.
Proliferation potential of Müller glia after retinal damage varies between mouse strains.
Age, Specimen part
View SamplesCoordinated interactions between ovarian granulosa and theca cells are required for female endocrine function and fertility. To elucidate these interactions the regulation of the granulosa and theca cell transcriptomes during bovine antral follicle development were investigated. Granulosa cells and theca cells were isolated from small (<5 mm), medium (5-10 mm), and large (>10 mm) antral bovine follicles. A microarray analysis of 24,000 bovine genes revealed that granulosa cells and theca cells each had gene sets specific to small, medium and large follicle cells. Transcripts regulated (i.e., minimally changed 1.5-fold) during antral follicle development for the granulosa cells involved 446 genes and for theca cells 248 genes. Only 28 regulated genes were common to both granulosa and theca cells. Regulated genes were functionally categorized with a focus on growth factors and cytokines expressed and regulated by the two cell types. Candidate regulatory growth factor proteins mediating both paracrine and autocrine cell-cell interactions include macrophage inflammatory protein (MIP1 beta), teratocarcinoma-derived growth factor 1 (TDGF1), stromal derived growth factor 1 (SDF1; i.e., CXCL12), growth differentiation factor 8 (GDF8), glia maturation factor gamma (GMFG), osteopontin (SPP1), angiopoietin 4 (ANGPT4), and chemokine ligands (CCL 2, 3, 5, and 8). The current study examined granulosa cell and theca cell regulated genes associated with bovine antral follicle development and identified candidate growth factors potentially involved in the regulation of cell-cell interactions required for ovarian function.
Regulation of granulosa and theca cell transcriptomes during ovarian antral follicle development.
No sample metadata fields
View Samples