This SuperSeries is composed of the SubSeries listed below.
Copy number variation in Y chromosome multicopy genes is linked to a paternal parent-of-origin effect on CNS autoimmune disease in female offspring.
Sex, Age, Specimen part
View SamplesThe prevalence of some autoimmune diseases (AID) is greater in females compared with males, notwithstanding that disease severity is often greater in males. The reason for this sexual dimorphism (SD) is unknown, but may reflect negative selection of Y chromosome (ChrY) bearing sperm during spermatogenesis or male fetuses early in the course of conception/pregnancy. Previously, we showed that the SD in experimental autoimmune encephalomyelitis (EAE) is associated with copy number variation (CNV) in ChrY multicopy genes. Here, we test the hypothesis that CNV in ChrY multicopy genes influences the paternal parent-of-origin effect on EAE susceptibility in female mice. We show that C57BL/6J consomic strains of mice possessing an identical ChrX and CNV in ChrY multicopy genes exhibit a female biased sex-ratio and sperm head abnormalities, consistent with X-Y intragenomic conflict arising from an imbalance in CNV between homologous ChrX:ChrY multicopy genes. These males also display paternal transmission of EAE to female offspring and differential loading of miRNAs within the sperm nucleus. These findings provide evidence for a genetic mechanism at the level of the male gamete that contributes to the SD in EAE and paternal parent-of-origin effects in female mice, raising the possibility that a similar mechanism may contribute to the SD in MS.
Copy number variation in Y chromosome multicopy genes is linked to a paternal parent-of-origin effect on CNS autoimmune disease in female offspring.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The Y chromosome as a regulatory element shaping immune cell transcriptomes and susceptibility to autoimmune disease.
Sex, Age, Specimen part
View SamplesUnderstanding the DNA elements that constitute and control the regulatory genome is critical for the appropriate therapeutic management of complex diseases. Here, using chromosome Y (ChrY) consomic mouse strains on the C57BL/6J background, we show that susceptibility to two diverse animal models of autoimmune disease, including experimental allergic encephalomyelitis (EAE) and experimental myocarditis, correlates with the natural variation in copy number of Sly and Rbmy multicopy ChrY genes. In the B6 background, ChrY possesses gene regulatory properties that impact both genome-wide gene expression and the presence of alternative splice variants in pathogenic CD4+ T cells. Using a ChrY consomic strain on the SJL background, we discovered a preference for ChrY-mediated gene regulation in macrophages, the immune cell subset underlying the EAE sexual dimorphism in SJL mice, rather than CD4+ T cells. Importantly, in both genetic backgrounds, an inverse correlation exists between the number of Sly and Rbmy ChrY gene copies and the number of significantly upregulated genes in immune cells, thereby supporting a link between copy number variation of Sly and Rbmy with the ChrY genetic element exerting regulatory properties. Moreover, in humans, an analysis of the CD4+ T cell transcriptome from male multiple sclerosis patients versus healthy controls provides further evidence for an evolutionarily conserved mechanism of gene regulation by ChrY. Thus, these data establish ChrY as a member of the regulatory genome in mammals due to its ability to regulate gene expression and alternative splicing in immune cells linked to disease.
The Y chromosome as a regulatory element shaping immune cell transcriptomes and susceptibility to autoimmune disease.
Sex, Age, Specimen part
View SamplesUnderstanding the DNA elements that constitute and control the regulatory genome is critical for the appropriate therapeutic management of complex diseases. Here, using chromosome Y (ChrY) consomic mouse strains on the C57BL/6J background, we show that susceptibility to two diverse animal models of autoimmune disease, including experimental allergic encephalomyelitis (EAE) and experimental myocarditis, correlates with the natural variation in copy number of Sly and Rbmy multicopy ChrY genes. In the B6 background, ChrY possesses gene regulatory properties that impact both genome-wide gene expression and the presence of alternative splice variants in pathogenic CD4+ T cells compared to CD4+ T cells. An inverse correlation exists between the number of Sly and Rbmy ChrY gene copies and the number of significantly upregulated genes in immune cells, thereby supporting a link between copy number variation of Sly and Rbmy and the ChrY genetic element exerting regulatory properties. Thus, these data establish ChrY as a member of the regulatory genome in mammals due to its ability to regulate gene expression and alternative splicing in immune cells linked to disease.
The Y chromosome as a regulatory element shaping immune cell transcriptomes and susceptibility to autoimmune disease.
Sex, Age, Specimen part
View SamplesBackground: Information on the carcinogenic potential of chemicals is only availably for High Production Volume products. There is however, a pressing need for alternative methods allowing for the chronic toxicity of substances, including carcinogenicity, to be detected earlier and more reliably. Here we applied advanced genomics to a cellular transformation assay to identify gene signatures useful for the prediction of risk for carcinogenicity. Methods: Genome wide gene expression analysis and qRT-PCR were applied to untransformed and transformed Balb/c 3T3 cells that exposed to 2, 4-diaminotoluene (DAT), benzo(a)pyrene (BaP), 2-Acetylaminoflourene (AAF) and 3-methycholanthrene (MCA) for 24h and 120h, at different concentrations, respectively. Furthermore, various bioinformatics tools were used to identify gene signatures predicting for the carcinogenic risk. Results: Bioinformatics analysis revealed distinct datasets for the individual chemicals tested while the number of significantly regulated genes increased with ascending treatment concentration of the cell cultures. Filtering of the data revealed a common gene signature that comprised of 13 genes whose regulation in cancer tissue has already been established. Strikingly, this gene signature was already identified prior to cell transformation therefore confirming the predictive power of this gene signature in identifying carcinogenic risks of chemicals. Comparison of fold changes determined by microarray analysis and qRT-PCR were in good agreement. Conclusion: Our data describes selective and commonly regulated carcinogenic pathways observed in an easy to use in vitro carcinogenicity assay. Here we defined a set of genes which can serve as a simply assay to predict the risk for carcinogenicity by use of an alternative in vitro testing strategy.
Toxicogenomics applied to in vitro carcinogenicity testing with Balb/c 3T3 cells revealed a gene signature predictive of chemical carcinogens.
Cell line, Treatment, Time
View SamplesThe aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that is regulated by environmental toxicants that function as AHR agonists such as 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD). L-Type Amino Acid Transporter 1 (LAT1) is a leucine uptake transporter that is overexpressed in cancer. The regulation of LAT1 by AHR in MCF-7 and MDA-MB-231 breast cancer cells (BCCs) was investigated in this report. Ingenuity pathway analysis (IPA) revealed a significant association between TCDD-regulated genes (TRGs) and molecular transport. Overlapping the TCDD-RNA-Seq dataset in this report with a published TCDD-ChIP-seq dataset identified that LAT1 was a direct TCDD/AHR gene target. Short interfering RNA (siRNA)-directed knockdown of AHR confirmed that TCDD-stimulated increases in LAT1 mRNA and protein required AHR. TCDD-stimulated increases in LAT1 mRNA was also inhibited by the AHR antagonist CH-223191. Upregulation of LAT1 by TCDD coincided with increases in leucine uptake by MCF-7 cells in response to TCDD. Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assays revealed increases in AHR, AHR nuclear translocator (ARNT) and p300 binding and histone H3 acetylation at an AHR binding site in the LAT1 gene in response to TCDD. In MDA-MB-231 cells, which exhibit high levels of endogenous AHR activity, the levels of endogenous LAT1 mRNA and protein were reduced in response to knockdown of AHR with AHR-siRNA. The regulation of LAT1 by AHR stimulated MDA-MB-231 proliferation. Collectively, these findings have provided a deeper mechanistic understanding of extrinsic and intrinsic regulation of LAT1 by AHR. Overall design: Expression profiling of four replicates of MCF-7 cells treated with 10nM TCDD were compared to expression profiles of four control replicates of MCF-7 cells treated with DMSO by RNA-Seq
Aryl hydrocarbon receptor (AHR) regulation of L-Type Amino Acid Transporter 1 (LAT-1) expression in MCF-7 and MDA-MB-231 breast cancer cells.
Treatment, Subject
View SamplesSeveral studies have shown that bone mineral density (BMD), a clinically measurable predictor of osteoporotic fracture, is the sum of genetic and environmental influences. In addition, serum IGF-1 levels have been correlated to both BMD and fracture risk. We previously identified a Quantitative Trait Locus (QTL) for Bone Mineral Density (BMD) on mouse Chromosome (Chr) 6 that overlaps a QTL for serum IGF-1. The B6.C3H-6T (6T) congenic mouse is homozygous for C57BL/6J (B6) alleles across the genome except for a 30 cM region on Chr 6 that is homozygous for C3H/HeJ (C3H) alleles. This mouse was created to study biology behind both the BMD and the serum IGF-1 QTLs and to identify the gene(s) underlying these QTLs. Female 6T mice have lower BMD and lower serum IGF-1 levels at all ages measured. As the liver is the major source of serum IGF-1, we examined differential expression in the livers of fasted female B6 and 6T mice by microarray.
A chromosomal inversion within a quantitative trait locus has a major effect on adipogenesis and osteoblastogenesis.
No sample metadata fields
View SamplesMost human tumors have abnormal numbers of chromosomes, a condition known as aneuploidy. The mitotic checkpoint is an important mechanism that prevents aneuploidy through restraining the activity of the anaphase-promoting complex (APC). USP44 was identified as a key regulator of APC activation that maintains the association of MAD2 with the APC co-activator Cdc20. However, the physiological importance of USP44 and its impact on cancer biology are unknown. Here, we show that USP44 is required to prevent tumors in mice and is frequently down-regulated in human lung cancer. USP44 inhibits chromosome segregation errors independently of its role in the mitotic checkpoint by regulating proper centrosome separation, positioning, and mitotic spindle geometry, functions that require direct binding to the centriole protein, centrin. These data reveal a new role for the ubiquitin system in mitotic spindle regulation and underscore the importance of USP44 in the pathogenesis of human cancer.
USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis.
Sex, Disease, Disease stage
View SamplesThe etiology behind cancer-related fatigue (CRF) is currently unknown. The physiological mechanisms of CRF are based on limited evidence that genetic factors, energy expenditure, metabolism, aerobic capacity, and the individual's immune response to inflammation are responsible for the experience of CRF. Gene expression profiling using microarray analysis from white blood cells of men with non-metastatic prostate cancer shows significant, differential expression of 463 probesets during localized external beam radiation therapy (EBRT). Pathway analysis shows a central role of SNCA (alpha-synuclein gene) among these differentially expressed probesets. Significant expression of SNCA was confirmed by qPCR (p<.001) and ELISA (p<.001) over time during EBRT. A significant correlation was noted between averaged fatigue scores and delta CT values of SNCA expression using confirmatory qPCR over time during EBRT (R=-.90, p=.006). Development of fatigue experienced by these men during EBRT may be mediated by SNCA expression. Pathways related to alpha-synuclein may serve as useful biomarkers to understand the mechanisms behind the development of fatigue.
Upregulation of α-synuclein during localized radiation therapy signals the association of cancer-related fatigue with the activation of inflammatory and neuroprotective pathways.
Sex, Specimen part, Disease, Disease stage, Treatment, Subject
View Samples