refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 680 results
Sort by

Filters

Technology

Platform

accession-icon GSE48937
KDELR activation
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

HeLa cells transfected to express KDELR1 and HeLa cells incubated with KDEL-Bodipy peptide

Publication Title

Control systems of membrane transport at the interface between the endoplasmic reticulum and the Golgi.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE19143
Gene expression data from children diagnosed with ALL in vitro sensitive or resistant to prednisolone
  • organism-icon Homo sapiens
  • sample-icon 52 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Although the prognosis for childhood Acute Lymphoblastic Leukemia (ALL) in general has improved tremendously over the last decades, the survival chances for infants (<1 year of age) with ALL remains poor.

Publication Title

Association of high-level MCL-1 expression with in vitro and in vivo prednisone resistance in MLL-rearranged infant acute lymphoblastic leukemia.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon GSE5824
Identification of rapamycin as a glucocorticoid resistance reversal agent
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Drug resistance remains a major obstacle to successful cancer treatment. Here we use a novel approach to identify rapamycin as a glucocorticoid resistance reversal agent. A database of drug-associated gene expression profiles was screened for molecules whose profile overlapped with a gene expression signature of glucocorticoid (GC) sensitivity/resistance in Acute Lymphoblastic Leukemia (ALL) cells. The screen indicated the mTOR inhibitor rapamycin profile matched the signature of GC-sensitivity. We thus tested the hypothesis that rapamycin would induce GC sensitivity in lymphoid malignancy cells, and found that it sensitized cells to glucocorticoid induced apoptosis via modulation of antiapoptotic MCL1. These data indicate that MCL1 is an important regulator of GC-induced apoptosis, and that the combination of rapamycin and glucocorticoids has potential utility in ALL. Furthermore this approach represents a novel strategy for identification of promising combination therapies for cancer.

Publication Title

Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE5820
Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL-1 and glucocorticoid resistance
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Drug resistance remains a major obstacle to successful cancer treatment. Here we use a novel approach to identify rapamycin as a glucocorticoid resistance reversal agent. A database of drug-associated gene expression profiles was screened for molecules whose profile overlapped with a gene expression signature of glucocorticoid (GC) sensitivity/resistance in Acute Lymphoblastic Leukemia (ALL) cells. The screen indicated the mTOR inhibitor rapamycin profile matched the signature of GC-sensitivity. We thus tested the hypothesis that rapamycin would induce GC sensitivity in lymphoid malignancy cells, and found that it sensitized cells to glucocorticoid induced apoptosis via modulation of antiapoptotic MCL1. These data indicate that MCL1 is an important regulator of GC-induced apoptosis, and that the combination of rapamycin and glucocorticoids has potential utility in ALL. Furthermore this approach represents a novel strategy for identification of promising combination therapies for cancer.

Publication Title

Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE5821
Rapamycin treatment of CEM_C1 cells 24 hours
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Drug resistance remains a major obstacle to successful cancer treatment. Here we use a novel approach to identify rapamycin as a glucocorticoid resistance reversal agent. A database of drug-associated gene expression profiles was screened for molecules whose profile overlapped with a gene expression signature of glucocorticoid (GC) sensitivity/resistance in Acute Lymphoblastic Leukemia (ALL) cells. The screen indicated the mTOR inhibitor rapamycin profile matched the signature of GC-sensitivity. We thus tested the hypothesis that rapamycin would induce GC sensitivity in lymphoid malignancy cells, and found that it sensitized cells to glucocorticoid induced apoptosis via modulation of antiapoptotic MCL1. These data indicate that MCL1 is an important regulator of GC-induced apoptosis, and that the combination of rapamycin and glucocorticoids has potential utility in ALL. Furthermore this approach represents a novel strategy for identification of promising combination therapies for cancer.

Publication Title

Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE5822
Rapamycin treated CEM-C1 cells 3 hours
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Drug resistance remains a major obstacle to successful cancer treatment. Here we use a novel approach to identify rapamycin as a glucocorticoid resistance reversal agent. A database of drug-associated gene expression profiles was screened for molecules whose profile overlapped with a gene expression signature of glucocorticoid (GC) sensitivity/resistance in Acute Lymphoblastic Leukemia (ALL) cells. The screen indicated the mTOR inhibitor rapamycin profile matched the signature of GC-sensitivity. We thus tested the hypothesis that rapamycin would induce GC sensitivity in lymphoid malignancy cells, and found that it sensitized cells to glucocorticoid induced apoptosis via modulation of antiapoptotic MCL1. These data indicate that MCL1 is an important regulator of GC-induced apoptosis, and that the combination of rapamycin and glucocorticoids has potential utility in ALL. Furthermore this approach represents a novel strategy for identification of promising combination therapies for cancer.

Publication Title

Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE60528
Mouse GM-CSF-related alveolar macrophage genome-wide expression data
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

GM-CSF receptor- deficient (Csf2rb/ or KO) mice develop a lung disease identical to hereditary pulmonary alveolar proteinosis (hPAP) in humans with recessive CSF2RA or CSF2RB mutations that impair GM-CSF receptor function. We performed pulmonary macrophage transplantation (PMT) of bone marrow derived macrophages (BMDMs) without myeloablation in Csf2rb/mice. BMDMs were administered by endotracheal instillation into 2 month-old Csf2rb/ mice. Results demonstrated that PMT therapeutic of hPAP in Csf2rb/ mice was highly efficacious and durable. Alveolar macrophages were isolated by bronchoalveolar lavage one year after administration subjected to microarray analysis to determine the effects of PMT therapy on the global gene expression profile.

Publication Title

Pulmonary macrophage transplantation therapy.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE18668
Differentiation of NUT midline carcinoma by epigenomic reprogramming
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Knockdown of the oncogene, BRD4-NUT, in a rare cancer, termed NUTmidline carcinoma (NMC), results in morphologic features consistent with squamous differentiation. Treatment with the HDAC-inhibitor, TSA, appears to cause the same phenotype. Here, we use gene expression profiling to compare the changes in gene expression following BRD4-NUT knockdown and TSA treatment.

Publication Title

Differentiation of NUT midline carcinoma by epigenomic reprogramming.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP095559
Gene expression profiling of mouse brown and white adipose tissues
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gene expression profiling of supraclavicular brown, interscapular brown, inguinal white, and epididymal white adipose tissues from C57BL/6 male mice was performed by RNA-sequencing. Overall design: Total of 12 RNA samples (3 RNA samples from each adipose tissue type) from adipose tissues were used for RNA-sequencing analysis.

Publication Title

Identification and characterization of a supraclavicular brown adipose tissue in mice.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP069870
Feedback regulation of cholesterol metabolism by LeXis, a lipid-responsive non-coding RNA
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Abstract: The LXR and SREBP transcription factors are key regulators of cellular and systemic cholesterol homeostasis. The molecular mechanisms that integrate these pathways are incompletely understood. Here we show that ligand activation of LXRs in liver not only promotes cholesterol efflux, but also simultaneously inhibits cholesterol biosynthesis. We further identify the long non-coding RNA LeXis as an unexpected mediator of this effect. LeXis is robustly induced in mouse liver in response to western diet feeding or pharmacologic LXR activation. Expression of LeXis in liver inhibits cholesterol biosynthesis and lowers plasma cholesterol levels. Reciprocally, knockdown of LeXis increases hepatic cholesterol content and raises plasma cholesterol levels. LeXis interacts with the heterogeneous nuclear ribonucleoprotein Raly and regulates its binding to cholesterol biosynthetic gene promoters. These studies outline a regulatory role for a non-coding RNA in lipid metabolism and advance our understanding of the mechanisms orchestrating systemic sterol homeostasis. Overall design: Global RNA expression from primary hepatocytes treated with or without GW3965 were compared by RNA-Seq.

Publication Title

Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact