refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 680 results
Sort by

Filters

Technology

Platform

accession-icon GSE39976
Determination of molecular markers for BRCA1 and BRCA2 heterozygosity using gene expression profiling
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Approximately 5% of all breast cancers can be attributed to an inherited mutation in one of two cancer susceptibility genes, BRCA1 and BRCA2. We searched for genes that have the potential to distinguish healthy BRCA1 and BRCA2 mutation carriers from non-carriers based on differences in expression profiling. Using expression microarrays we compared gene expression of irradiated lymphocytes from BRCA1 and BRCA2 mutation carriers versus control non-carriers. We identified 137 probe sets in BRCA1 carriers and 1345 in BRCA2 carriers with differential gene expression. Gene Ontology analysis revealed that most of these genes relate to regulation pathways of DNA repair processes, cell cycle regulation and apoptosis. Real-time PCR was performed on the 36 genes which were most prominently differentially expressed in the microarray assay; 21 genes were shown to be significantly differentially expressed in BRCA1 or BRCA2 mutation carriers as compared to controls (p<0.05). Based on a validation study with 40 mutation carriers and 17 non-carriers, a multiplex model that included six or more coincidental genes of 18 selected genes was constructed in order to predict the risk of carrying a mutation. The results using this model showed sensitivity 95% and specificity 88%. In summary, our study provides insight into the biological effect of heterozygous mutations in BRCA1 and BRCA2 genes in response to ionizing irradiation induced DNA damage. We also suggest a set of 18 genes that can be used as a prediction and screening tool for BRCA1 or BRCA2 mutational carriers by using easily obtained lymphocytes.

Publication Title

Determination of molecular markers for BRCA1 and BRCA2 heterozygosity using gene expression profiling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37005
Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq
  • organism-icon Mus musculus, Homo sapiens, Saccharomyces cerevisiae
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE36958
Gene expression profiles of WT and ime4-/- mutant yeast cells, under vegetative and meiosis-inducing conditions
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Inactivation of the yeast IME4 gene, the yeast homologue of METTL3, was shown to result in the loss of m6A in mRNA of mutant cells grown in sporulation medium. We attempted to characterize the effects of ime4 deletion on gene expression under vegetative and meiosis-inducing conditions. The results show that in vegetatively-growing ime4-/- cells there is an increased expression of the RME1 gene (repressor of meiosis) which prevents precocious entry into the meiotic program. Mutant yeast cells showed reduced expression levels of genes involved in ribosome biogenesis and gene expression processes. Surprisingly, despite the fact that a diploid strain was analyzed, there was also a striking change in the expression level of haploid-specific genes, suggesting that RNA methylation may be used to enforce the sexual identity of diploid cells, required for the implementation of the gametogenesis program. Consistently, when cells were induced to undergo meiosis, ime4-/- diploids failed to undergo the meiotic divisions. Among the genes showing reduced expression in the mutant were IME1 and IME2, the two known inducers of meiosis. Thus, the yeast IME4 gene plays an important role in the regulation of the developmental switch from vegetative cells into gametogenesis.

Publication Title

Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP012098
m6A mapping in human RNA (with treatments)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

We developed a novel approach, m6A-seq, for high-resolution mapping of the transcriptome-wide m6A landscape, based on antibody-mediated capture followed by massively parallel sequencing. Overall design: Identification of m6A modified sequences in HepG2 cells. HepG2 cells were incubated with either IFNg (200ng/ml) or HGF/SF (10 ng/ml) over night. Stress effects were tested in HepG2 cells by either 30 minutes incubation at 43ºC (heat shock) or UV irradiation of 0.04 J/cm2 followed by 4 hours of recovery in normal growing conditions prior to harvesting using Trypsin.

Publication Title

Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon SRP012096
METTL3 KD in HepG2 cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

To gain insight into possible processes that require m6A for their function, METTL3 was knocked down (KD) in HepG2 cells by siRNA transfections Overall design: Differential expression analysis of METTL3 KD versus mock-transfected HepG2 cells, in 2 biological replicates

Publication Title

Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP048595
m6A mRNA Methylation Facilitates Resolution of Naïve Pluripotency Towards Differentiation (3p-Seq)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Naïve and primed pluripotent states retain distinct molecular properties, yet limited knowledge exists on how their state transitions are regulated. Here we identify Mettl3, an N6-Methyladenosine (m6A) transferase, as a regulator for terminating murine naïve pluripotency. Mettl3 knockout pre-implantation epiblasts and naïve embryonic stem cells (ESCs) are depleted for m6A in mRNAs and yet, are viable. However, they fail to adequately terminate their naïve state, and subsequently undergo aberrant and restricted lineage priming at the post-implantation stage, leading to early embryonic lethality. m6A predominantly and directly reduces mRNA stability, including that of key naïve pluripotency promoting transcripts. This study highlights a critical role for an mRNA epigenetic modification in vivo, and identifies regulatory modules that functionally influence naïve and primed pluripotency in an opposing manner. Overall design: 3'' polyA RNA-sequencing (equivalent to Digital Gene Expression) measured in mouse Embryonic Stem Cells (ESCs) and mouse Embriod bodies (EBs) 0,4 & 8 hours after treatment with Actinomycin which halts transcription. Measured in both WT and Mettl3-KO cells.

Publication Title

Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP048598
m6A mRNA Methylation Facilitates Resolution of Naïve Pluripotency Towards Differentiation (RNA-Seq)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Naïve and primed pluripotent states retain distinct molecular properties, yet limited knowledge exists on how their state transitions are regulated. Here, we identify Mettl3, an N6-methyladenosine (m6A) transferase, as a regulator for terminating murine naïve pluripotency. Mettl3 knockout pre-implantation epiblasts and naïve embryonic stem cells (ESCs) are depleted for m6A in mRNAs and yet, are viable. However, they fail to adequately terminate their naïve state, and subsequently undergo aberrant and restricted lineage priming at the post-implantation stage, leading to early embryonic lethality. m6A predominantly and directly reduces mRNA stability, including that of key naïve pluripotency promoting transcripts. This study highlights a critical role for an mRNA epigenetic modification in vivo, and identifies regulatory modules that functionally influence naïve and primed pluripotency in an opposing manner. Overall design: polyA RNA-seq was measured in mouse embryonic stem cells (ESCs) and embroid bodies (EBs), each in WT and in Mettl3-KO cell lines. RNA-seq was measured also from WT mouse embronic fibroblasts (MEF). 3 biological replicates are available from ESCs and 2 from EBs. Replicate C in ESCs was measured alongside protein levels (SILAC) and was used for the analysis of that assay.

Publication Title

Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP048597
m6A mRNA Methylation Facilitates Resolution of Naïve Pluripotency Towards Differentiation (Ribo-seq)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Naïve and primed pluripotent states retain distinct molecular properties, yet limited knowledge exists on how their state transitions are regulated. Here we identify Mettl3, an N6-Methyladenosine (m6A) transferase, as a regulator for terminating murine naïve pluripotency. Mettl3 knockout pre-implantation epiblasts and naïve embryonic stem cells (ESCs) are depleted for m6A in mRNAs and yet, are viable. However, they fail to adequately terminate their naïve state, and subsequently undergo aberrant and restricted lineage priming at the post-implantation stage, leading to early embryonic lethality. m6A predominantly and directly reduces mRNA stability, including that of key naïve pluripotency promoting transcripts. This study highlights a critical role for an mRNA epigenetic modification in vivo, and identifies regulatory modules that functionally influence naïve and primed pluripotency in an opposing manner. Overall design: Ribosome footprint (Ribo-Seq) was measured from mouse embryonic stem cells and mouse embriod bodies, in WT and Mettl3-KO cell lines.

Publication Title

Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE134890
Pro-BMP9 and pro-BMP10 signalling in pulmonary arterial endothelial cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

This study was designed to compare the global gene expression change induced by the circulating, prodomain bound forms of BMP9 and BMP10 (pro-BMP9 and pro-BMP10) in human pulmonary arterial endothelial cells (PAECs). This is different from many previous studies which used the growth factor domain of BMP9 and/or BMP10.

Publication Title

Molecular basis of ALK1-mediated signalling by BMP9/BMP10 and their prodomain-bound forms.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE84880
A comparison of GS-5759, a bifunctional 2-adrenoceptor agonist and PDE4 inhibitor, and indacaterol and GSK 256066 in combination on gene expression changes in the BEAS-2B human airway epithelial cell line
  • organism-icon Homo sapiens
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

GS-5759 is a bifunctional ligand composed of a quinolinone-containing pharmacophore found in several 2-adrenoceptor agonists linked covalently to a phosphodiesterase 4 inhibitor (PDE4) related to GSK 256066 by a pent-1-yn-1-ylbenzene spacer. The object of the study was to detemine if gene expression changes induced by GS-5759 were replicated by a 2-adrenoceptor agonist (indacaterol; Ind) and a PDE4 inhibitor (GSK 256066; GSK) in combination.

Publication Title

GS-5759, a Bifunctional β2-Adrenoceptor Agonist and Phosphodiesterase 4 Inhibitor for Chronic Obstructive Pulmonary Disease with a Unique Mode of Action: Effects on Gene Expression in Human Airway Epithelial Cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact