Extracellular nucleotides are potent signaling molecules mediating cell-specific biological functions. We previously demonstrated that adenosine 5'-triphosphate (ATP) inhibits the proliferation while stimulating the migration, in vitro and in vivo, of human bone marrow-derived mesenchymal stem cells (BM-hMSC). Here, we investigated the effects of ATP on BM-hMSC differentiation capacity.
Extracellular purines promote the differentiation of human bone marrow-derived mesenchymal stem cells to the osteogenic and adipogenic lineages.
Specimen part, Treatment, Time
View SamplesIn the present study, we investigated whether, and to what extent, P2Rs and their ligands are involved in the regulation of AML cells. Our findings show that AML blasts express several receptors belonging to the P2X and P2Y family. Although different samples respond differently to ATP and UTP stimulation (reflecting the variability intrinsic to the group of acute myeloid leukemias), all the tested samples appear to be responsive to purinergic signalling, as demonstrated by intracellular calcium mobilization.
Purinergic signaling inhibits human acute myeloblastic leukemia cell proliferation, migration, and engraftment in immunodeficient mice.
Specimen part
View SamplesWe show the molecular and functional characterization of a novel population of lineage-negative CD34-negative (Lin- CD34-) hematopoietic stem cells (HSCs) from chronic myelogenous leukemia (CML) patients at diagnosis. Molecular caryotyping and quantitative analysis of BCR/ABL transcript demonstrated that about one third of CD34- was leukemic. CML CD34- cells showed kinetic quiescence and limited clonogenic capacity. However, stroma-dependent cultures and cytokines induced CD34 expression on some HSCs, cell cycling, acquisition of clonogenic activity and increased expression of BCR/ABL transcript. CML CD34- cells showed an engraftment rate in immunodeficient mice similar to that of CD34+ cells. Gene expression profiling revealed the down-regulation of cell cycle arrest genes together with genes involved in antigen presentation and processing, while the expression of angiogenic factors was strongly up-regulated when compared to normal counterparts. Flow cytometry analysis confirmed the significant down-regulation of HLA class I and II molecules in CML CD34-cells. Increasing doses of imatinib mesilate (IM) did not affect fusion transcript levels, BCR-ABL kinase activity and the clonogenic efficiency of CML CD34- cells as compared to leukemic CD34+cells.
Molecular and functional analysis of the stem cell compartment of chronic myelogenous leukemia reveals the presence of a CD34- cell population with intrinsic resistance to imatinib.
No sample metadata fields
View SamplesNucleotides triphosphates are extracellular messengers binding to specific plasma membrane receptors (P2Rs) that modulate responses as different as proliferation, differentiation, migration or cell death on several cell types including hematopoietic stem cells. Little and controversial information is available on the role of extracellular nucleotides in human mesenchimal stem cells (hMSCs). In this study, we assessed whether P2Rs are expressed and functional in bone marrow-derived hMSCs. Our results demonstrated, at the mRNA and protein level, the expression of all P2X and P2Y receptor subtypes identified so far. P2R activation by their natural ligands adenosine triphosphate (ATP) and uridine triphosphate (UTP) induced in hMSCs, intracellular Ca2+ concentration changes, plasma membrane depolarization and permeabilization. hMSCs were resistant to the cytotoxic effects of high dose ATP despite the expression of permeabilizing P2Rs as demonstrated by the lack of morphological changes, significant release of intracellular markers of cell death or modification of the mitochondrial network. Gene expression profiling revealed the down-regulation of cell proliferation genes whereas genes involved in cell migration and cytokine production were strongly up-regulated by ATP. Functional studies confirmed the inhibitory activity of ATP on proliferation of hMSCs and clonogenic progenitors. Moreover, ATP exerted a chemotactic effect on hMSCs and increased their migration in response to the chemokine CXCL12. Finally, whereas ATP did not affect T-cell inhibitory activity of hMSCs, the nucleotide increased the production of pro-inflammatory cytokines by hMSCs. Thus, our data show that purinergic signaling modulates hMSC functions and point to a role for extracellular nucleotides on hMSCs biology.
Purinergic stimulation of human mesenchymal stem cells potentiates their chemotactic response to CXCL12 and increases the homing capacity and production of proinflammatory cytokines.
No sample metadata fields
View SamplesBitter taste receptors (T2Rs) are typical G-protein coupled receptors expressed in various tissue where they are involved in the regulation of physiological processes, thus suggesting a wider function in sensing microenvironment. We analyzed their expression and role in acute myeloid leukemia (AML). AML cells express functional T2Rs and their stimulation with the agonist, denatonium benzoate, substantially modified the AML cell transcriptomic profile and functions. GEP analysis identified relevant cellular processes affected by denatonium treatment in AML, including cell cycle, survival, migration and metabolism. More precisely, T2R activation reduced proliferation by inducing cell cycle arrest in G0/G1 phase or induced apoptosis via caspase cascade activation; impaired AML cell motility and migratory capacity; inhibited cellular respiration by decreasing glucose uptake and oxidative phosphorylation.
Denatonium as a Bitter Taste Receptor Agonist Modifies Transcriptomic Profile and Functions of Acute Myeloid Leukemia Cells.
Specimen part, Cell line, Treatment
View SamplesBackground. More than one million women in fertile age are infected with Trypanosoma cruzi worldwide. Anti-T.cruzi seropositivity in mothers has been associated with adverse pregnancy outcome but there is still a knowledge gap regarding this effect. Our aim was to compare the gene expression profile of term placental environment from T. cruzi seropositive (SP) and seronegative (SN) mothers. Methods. A RNA-Seq was performed in 9 pools of 2 different placental RNA samples each: 3 belonging to placentas from SN and 6 from SP. Each pool consisted of a binomial of a female/male newborn and a vaginal/caesarean delivery. None of the newborns resulted infected. Results. Only 42 genes showed a significant fold change between SP and SN groups. Among the down-regulated genes were KISS1 and CGB5. In the up-regulated genes group were: KIF12, HLA-G, PRG2, TAC3, FN1 and ATXN3L. To identify pathways significantly associated with maternal T. cruzi-infection, a gene-set association analysis was implemented. The placental environment transcriptomic profile of SP consisted of an enrichment in immunological genes sets (inflammatory response and lymphocytic activation were over-expressed) whereas numerous biosynthetic processes were down-regulated. Conclusions. It is worth noting that several differentially expressed genes in SP placentas code for proteins associated to preeclampsia and miscarriage. This first transcriptomics study in human term placental environment from non-infected deliveries shows a placental response that may affect the faetus while protecting it from the parasite infection; this host response could be responsible for the low rate of congenital transmission observed in human chronic Chagas disease. Background. More than one million women in fertile age are infected with Trypanosoma cruzi worldwide. Anti-T.cruzi seropositivity in mothers has been associated with adverse pregnancy outcome but there is still a knowledge gap regarding this effect. Our aim was to compare the gene expression profile of term placental environment from T. cruzi seropositive (SP) and seronegative (SN) mothers. Methods. A RNA-Seq was performed in 9 pools of 2 different placental RNA samples each: 3 belonging to placentas from SN and 6 from SP. Each pool consisted of a binomial of a female/male newborn and a vaginal/caesarean delivery. None of the newborns resulted infected. Results. Only 42 genes showed a significant fold change between SP and SN groups. Among the down-regulated genes were KISS1 and CGB5. In the up-regulated genes group were: KIF12, HLA-G, PRG2, TAC3, FN1 and ATXN3L. To identify pathways significantly associated with maternal T. cruzi-infection, a gene-set association analysis was implemented. The placental environment transcriptomic profile of SP consisted of an enrichment in immunological genes sets (inflammatory response and lymphocytic activation were over-expressed) whereas numerous biosynthetic processes were down-regulated. Conclusions. It is worth noting that several differentially expressed genes in SP placentas code for proteins associated to preeclampsia and miscarriage. This first transcriptomics study in human term placental environment from non-infected deliveries shows a placental response that may affect the faetus while protecting it from the parasite infection; this host response could be responsible for the low rate of congenital transmission observed in human chronic Chagas disease. Overall design: Serodiagnosis of pregnant women was done by means of conventional serological methods and carried out by the respective health centres based on routine assays. In maternal and umbilical cord blood samples T. cruzi presence was tested using multiplex Real Time PCR as previously described [6]. Maternal infection with other pathogens that produce congenital transmission and adverse pregnancy outcome were considered as exclusion criteria, as well as missing data or incorrect sampling. Fresh normal placentas were obtained after labour from vaginal or caesarean deliveries and placed within 24 hours at 4°C. Each placenta was dissected and the middle section [7] at 2 cm distance from the umbilical cord was isolated and placed into RNAlater solution (Applied Biosystems, Foster City, CA). Total RNA was extracted with TRIzol reagent (Invitrogen, Carlsbad, CA) and stored at -80°C until used. Transcriptomic studies. A RNA-Seq experiment was done in 9 pools of 2 different placental RNA samples each: 3 pools (C1, C2 and C3) belonging to placentas from seronegative mothers (SN) and 6 pools (TC4 to TC9) from seropositive mothers (SP). Each pool consisted of a binomial of a female/male newborn and a vaginal/caesarean delivery. The cDNA Libraries were prepared according to Illumina''s TruSeq Stranded Total RNA with Ribo-Zero Gold for Human and a Hiseq 2.500 Illumina platform with 100 bp paired-end reads was used for sequencing
Alterations in Placental Gene Expression of Pregnant Women with Chronic Chagas Disease.
Subject
View SamplesTumor epithelial cells develop within a microenvironment consisting of extracellular matrix, growth factors, and cytokines produced by non-epithelial stromal cells. In response to paracrine signals from tumor epithelia, stromal cells modify the microenvironment to promote tumor growth and metastasis. Here, we identify interleukin (IL)-33 as an epithelial cell-derived regulator of stromal cell activation and mediator of intestinal polyposis. IL-33 expression was elevated in the tumors and serum of colorectal cancer patients and induced in the adenomatous polyps of ApcMin/+ mutant mice. Genetic and antibody suppression of IL-33 signaling in ApcMin/+ mice inhibited proliferation, induced apoptosis, and suppressed angiogenesis in polyps, which reduced both tumor number and size. In ApcMin/+ polyps, IL-33 expression localized to tumor epithelial cells and expression of the IL-33 receptor, IL1RL1, associated with two stromal cell types, namely subepithelial myofibroblasts (SEMFs) and mast cells, whose activation was previously associated with polyposis. In vitro IL-33 stimulation of human SEMFs induced the expression of extracellular matrix components and growth factors associated with intestinal tumor progression. IL-33 deficiency reduced mast cell accumulation in ApcMin/+ polyps and expression of mast cell-derived proteases and cytokines known to promote polyposis. Together, our results suggest that IL-33 is a tumor epithelial cell-derived paracrine signal that promotes polyposis through the coordinated activation of stromal cells and the formation of a reactive stroma microenvironment. Overall design: Six T-75 flasks of CCD-18Co cells were grown to 80% confluency; three were treated with rhIL-33, three were given vehicle control; cells were trypsinized and split in two--half of each flask used for sequencing and half for qPCR validation post-sequencing
IL-33 activates tumor stroma to promote intestinal polyposis.
No sample metadata fields
View SamplesTo gain insight into the etiopathogenesis of Multiple sclerosis (MS) we investigated gene expression changes in CD4+ and CD8+ T lymphocytes from monozygotic twins (MZ) discordant for relapsing remitting MS.
CD161(high)CD8+T cells bear pathogenetic potential in multiple sclerosis.
Specimen part, Disease, Disease stage
View Samplesaffy_seed_kinetic_wheat - affy_seed_kinetic_wheat - Study gene expression during the grain developmental -The aim of the study is to identify the genes that are differentially expressed during the grain development in wheat.-Study gene expression during the grain developmental Sample at 100 degree days, year 2004 and 2006 Sample at 200 degree days, year 2004 and 2006 Sample at 250 degree days, year 2004 and 2006 Sample at 300 degree days, year 2004 and 2006 Sample at 400 degree days, year 2004 and 2006
RNA-seq in grain unveils fate of neo- and paleopolyploidization events in bread wheat (Triticum aestivum L.).
No sample metadata fields
View SamplesAstrocytes from optic nerve head from donors with and without glaucoma
Differential gene expression in astrocytes from human normal and glaucomatous optic nerve head analyzed by cDNA microarray.
No sample metadata fields
View Samples