Consumption of a protein containing meal by a fasted animal promotes protein accretion in skeletal muscle, in part through leucine stimulation of protein synthesis and indirectly through repression of protein degradation mediated by its metabolite, a-ketoisocaproate. Mice lacking the mitochondrial branched-chain aminotransferase (BCATm/Bcat2), that interconverts leucine and a-ketoisocaproate, exhibit elevated protein turnover. Here, the transcriptomes of gastrocnemius muscle from BCATm knockout (KO) and wildtype mice were compared using Next Generation RNA-Sequencing (RNA-Seq) to identify potential adaptations associated with their persistently altered nutrient signaling. Statistically significant changes in the abundance of 1486/~39,010 genes were identified. Bioinformatics analysis of the RNA-Seq data indicated that pathways involved in protein synthesis (eIF2, mTOR, eIF4 and p70S6K pathways including 40S and 60S ribosomal proteins), protein breakdown (e.g., ubiquitin mediated), and muscle degeneration (apoptosis, atrophy, myopathy and cell death) were up-regulated. Also in agreement with our previous observations, the abundance of mRNAs associated with reduced body size, glycemia, plasma insulin, and lipid signaling pathways were observed in BCATm KO mice. Consistently, genes encoding anaerobic and/or oxidative metabolism of carbohydrate, fatty acids and BCAAs were modestly but systematically reduced. Although there was no indication that muscle fiber type was different between KO and wildtype mice, a difference in the abundance of mRNAs associated with a muscular dystrophy phenotype was observed, consistent with the published exercise intolerance of these mice. The results suggest transcriptional adaptations occur in BCATm KO mice that along with altered nutrient signaling may contribute to their previously reported protein turnover, metabolic and exercise phenotypes. Overall design: Comparison of wildtype and BCATm KO gastrocnemius biological replicates
Global deletion of BCATm increases expression of skeletal muscle genes associated with protein turnover.
No sample metadata fields
View SamplesThe purpose of this study was to examined the acute actions of the second generation antipsychotic (SGA), olanzapine, on skeletal muscle (gastrocnemius) of Sprague Dawley Rats. SGAs cause metabolic side effects including leading to metabolic inflexibility, hyperglycemia, adiposity and diabetes. These effects are preceded by glucose intolerance and increased FFA flux and metabolism in peripheral tissues. Skeletal muscle is a likely target of glucose intolerance, therefore understanding how olanzapine affects the skeletal muscle transcriptome could elucidate approaches for mitigating these side effects. Male Sprague-Dawley rats freely fed on normal chow with comparable body weights (vehicle: 373±9g, olanzapine: 388±11g, p=0.34) were infused with vehicle or olanzapine for 24h using a dosing regimen leading to mild hyperglycemia (vehicle, 98±2mg/dl; olanzapine 127±4mg/dl, p=0.0023). For the olanzapine group, the venous catheter was attached to a syringe pump (Model NE-300) filled with olanzapine (Dr. Reddy’s Laboratories Ltd, Hyderabad, India) in sterile saline (infusion: 1mg/100g BW loading dose for 0.5h and then 0.04mg/100g/h continuously for 23.5h). Gastrocnemius was then surgically removed under isoflurane anesthesia (carried with 100% O2), and frozen between two aluminum blocks cooled to the temperature of liquid nitrogen and then stored at -80oC until RNA was isolated. With anesthesia gas flow continuing, the animals were euthanized by cutting the diaphram and removing the heart. The mRNA was isolated from from these muscles and used for RNA-Seq followed by alignment of the data with the rat genome assembly 5.0. To determine significant differences in FPKM values between control and olanzapine groups, the DEGexp function of the DEGseq 1.18.0 R package was used with the Likelihood Ratio Test (LRT) and default parameters. In the uploaded excel file, P values with p<0.05 and p<0.001 are shown for each row in different columns indicated by the number 1. The value 0 indicates the row is not significantly different. Overall design: Comparison of vehicle (n=3) and olanzapine infused (n=3) rats.
RNA sequencing reveals a slow to fast muscle fiber type transition after olanzapine infusion in rats.
No sample metadata fields
View SamplesCharacterize the spatiotemporal dynamics of gene expression in neurons in developing olfactory bulb Overall design: Comparison of transcriptome profiles of GFP+ and GFP- cells derived from olfactory bulb of NTS-GFP at different developmetal time points (E13, E15, E17 and P0).
RNA-seq analysis of developing olfactory bulb projection neurons.
No sample metadata fields
View SamplesHsa-mir-365-2 is one of the two precursors that give rise to miR-365. We discovered that miR-365 directly regulates a lung cancer and developmental gene termed thyroid transcription factor 1 (TTF-1 or NKX2-1).
MiR-365 regulates lung cancer and developmental gene thyroid transcription factor 1.
Cell line
View SamplesTo gain insight into the role of Runx3 in TrkC neurons we performed RNA-seq on E11.5 TrkC neurons isolated from cervical ganglia of Runx3-P2+/- and Runx3-P2-/- mice Overall design: Runx3-P2 mice express GFP in TrkC neurons enabling the FACS isolation of TrkC neurons from E11.5 embryos, Heterozygote Runx3-P2+/-(n=pool of 4) and homozygote Runx3-P2-/- (n=pool of 4) TrkC/GFP neurons were isolated,
An ensemble of regulatory elements controls Runx3 spatiotemporal expression in subsets of dorsal root ganglia proprioceptive neurons.
Specimen part, Cell line, Subject
View Samplesaffy_seed_kinetic_wheat - affy_seed_kinetic_wheat - Study gene expression during the grain developmental -The aim of the study is to identify the genes that are differentially expressed during the grain development in wheat.-Study gene expression during the grain developmental Sample at 100 degree days, year 2004 and 2006 Sample at 200 degree days, year 2004 and 2006 Sample at 250 degree days, year 2004 and 2006 Sample at 300 degree days, year 2004 and 2006 Sample at 400 degree days, year 2004 and 2006
RNA-seq in grain unveils fate of neo- and paleopolyploidization events in bread wheat (Triticum aestivum L.).
No sample metadata fields
View SamplesMost human pre-mRNAs are spliced into linear molecules that retain the exon order defined by the genomic sequence. By deep sequencing of RNA from a variety of normal and malignant human cells, we found RNA transcripts from many human genes in which the exons were arranged in a non-canonical order. Statistical estimates and biochemical assays provided strong evidence that a substantial fraction of the spliced transcripts from hundreds of genes are circular RNAs. Our results suggest that a non-canonical mode of RNA splicing, resulting in a circular RNA isoform, is a widespread and perhaps general feature of the gene expression program in human cells. Overall design: 3 samples of non-malignant primary human leukocytes, one replicate each
Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types.
Specimen part, Subject
View SamplesBackground: Information on the carcinogenic potential of chemicals is only availably for High Production Volume products. There is however, a pressing need for alternative methods allowing for the chronic toxicity of substances, including carcinogenicity, to be detected earlier and more reliably. Here we applied advanced genomics to a cellular transformation assay to identify gene signatures useful for the prediction of risk for carcinogenicity. Methods: Genome wide gene expression analysis and qRT-PCR were applied to untransformed and transformed Balb/c 3T3 cells that exposed to 2, 4-diaminotoluene (DAT), benzo(a)pyrene (BaP), 2-Acetylaminoflourene (AAF) and 3-methycholanthrene (MCA) for 24h and 120h, at different concentrations, respectively. Furthermore, various bioinformatics tools were used to identify gene signatures predicting for the carcinogenic risk. Results: Bioinformatics analysis revealed distinct datasets for the individual chemicals tested while the number of significantly regulated genes increased with ascending treatment concentration of the cell cultures. Filtering of the data revealed a common gene signature that comprised of 13 genes whose regulation in cancer tissue has already been established. Strikingly, this gene signature was already identified prior to cell transformation therefore confirming the predictive power of this gene signature in identifying carcinogenic risks of chemicals. Comparison of fold changes determined by microarray analysis and qRT-PCR were in good agreement. Conclusion: Our data describes selective and commonly regulated carcinogenic pathways observed in an easy to use in vitro carcinogenicity assay. Here we defined a set of genes which can serve as a simply assay to predict the risk for carcinogenicity by use of an alternative in vitro testing strategy.
Toxicogenomics applied to in vitro carcinogenicity testing with Balb/c 3T3 cells revealed a gene signature predictive of chemical carcinogens.
Cell line, Treatment, Time
View SamplesThe complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding selection of therapy, and monitoring interventions. Previously, we determined that plasma of recent-onset (RO) Type 1 diabetes (T1D) patients induce a proinflammatory transcriptional signature in fresh peripheral blood mononuclear cells (PBMC) relative to that of unrelated healthy controls (HC). Here, using an optimized cryopreserved PBMC-based protocol, we apply this approach to inflammatory bowel disease by examining groups of Crohn's disease (CD) and ulcerative colitus (UC) patients. The induced plasma induced signatures are compared to those of Type 1 diabetes patients (RO T1D) as well as unrelated healthy controls (uHC).
Plasma-induced signatures reveal an extracellular milieu possessing an immunoregulatory bias in treatment-naive paediatric inflammatory bowel disease.
No sample metadata fields
View SamplesApproximately 5% of all breast cancers can be attributed to an inherited mutation in one of two cancer susceptibility genes, BRCA1 and BRCA2. We searched for genes that have the potential to distinguish healthy BRCA1 and BRCA2 mutation carriers from non-carriers based on differences in expression profiling. Using expression microarrays we compared gene expression of irradiated lymphocytes from BRCA1 and BRCA2 mutation carriers versus control non-carriers. We identified 137 probe sets in BRCA1 carriers and 1345 in BRCA2 carriers with differential gene expression. Gene Ontology analysis revealed that most of these genes relate to regulation pathways of DNA repair processes, cell cycle regulation and apoptosis. Real-time PCR was performed on the 36 genes which were most prominently differentially expressed in the microarray assay; 21 genes were shown to be significantly differentially expressed in BRCA1 or BRCA2 mutation carriers as compared to controls (p<0.05). Based on a validation study with 40 mutation carriers and 17 non-carriers, a multiplex model that included six or more coincidental genes of 18 selected genes was constructed in order to predict the risk of carrying a mutation. The results using this model showed sensitivity 95% and specificity 88%. In summary, our study provides insight into the biological effect of heterozygous mutations in BRCA1 and BRCA2 genes in response to ionizing irradiation induced DNA damage. We also suggest a set of 18 genes that can be used as a prediction and screening tool for BRCA1 or BRCA2 mutational carriers by using easily obtained lymphocytes.
Determination of molecular markers for BRCA1 and BRCA2 heterozygosity using gene expression profiling.
Specimen part
View Samples