The objective of the study was to evalute the changes in gene expression associated to UCP2 invalidation in colon tumors from AOM/DSS-treated mice
UCP2 Deficiency Increases Colon Tumorigenesis by Promoting Lipid Synthesis and Depleting NADPH for Antioxidant Defenses.
Specimen part
View SamplesWe compare transcriptomic profiles of human induced pluripotent stem cells (iPSCs), motor neurons (MNs) in vitro differentiated from iPSCs or human ESCs containing a HB9::GFP reporter for MNs, and human fetal spinal cords.
ALS disrupts spinal motor neuron maturation and aging pathways within gene co-expression networks.
Sex
View SamplesBackground: Gliomas are the most common type of primary brain tumours, and in this group glioblastomas (GBMs) are the higher-grade gliomas with fast progression and unfortunate prognosis. Two major aspects of glioma biology that contributes to its awful prognosis are the formation of new blood vessels through the process of angiogenesis and the invasion of glioma cells. Despite of advances, two-year survival for GBM patients with optimal therapy is less than 30%. Even in those patients with low-grade gliomas, that imply a moderately good prognosis, treatment is almost never curative. Recent studies have demonstrated the existence of a small fraction of glioma cells with characteristics of neural stem cells which are able to grow in vitro forming neurospheres and that can be isolated in vivo using surface markers such as CD133. The aim of this study was to define the molecular signature of GBM cells expressing CD133 in comparison with non expressing CD133 cells. This molecular classification could lead to the finding of new potential therapeutic targets for the rationale treatment of high grade GBM.
Molecular analysis of ex-vivo CD133+ GBM cells revealed a common invasive and angiogenic profile but different proliferative signatures among high grade gliomas.
Specimen part, Disease
View SamplesNumerous CD11b+ myeloid cells are present within the dermis. They are very heterogeneous and can be divided in dermal DCs, tissue monocytes and tissue macrophages. At steady state, only CD11b+ DC migrate from the dermis to the skin draining lymph nodes whereas upon DNFB-induced inflammation, CD11b+ DC as well as dermal monocytes migrated to the lymph nodes. The objective of this study was to use gene expression profiling to rigorously identify the different subsets of dermal CD11b+ myeloid cells at steady state and upon inflammation and to characterize their functional potential.
Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin.
Sex, Age, Specimen part
View SamplesWe report the RNAseq data obtained from 50.000-100.000 CD31-/CD45- pneumocytes isolated by FACS from mice harboring a normal dose or one extra copy of the Sirt1 gene, and a tamoxifen-inducible oncogenic KI alelle of KRasG12V after 4 weeks of tamoxifen treatment. Pneumocytes with the activated form of the inducible KRasG12V oncogene sere selected making use of the reporter gene LacZ (located next to the oncogene in the same polycistronic mRNA), by loading CD31-/CD45- pneumocytes with the LacZ-activated fuorogenic molecule FDG prior to FACS sorting. Overall design: Four replicates of each genetic group (Sirt1-WT and Sirt1-Tg) pneumocytes were used for this study. Sirt1-WT were used as reference controls.
Sirt1 protects from K-Ras-driven lung carcinogenesis.
Subject
View SamplesWe report the RNAseq data obtained from 50.000-100.000 CD31-/CD45- pneumocytes isolated by FACS from mice harboring a normal dose or one extra copy of the Sirt1 gene, and a tamoxifen-inducible oncogenic KI alelle of KRasG12V after 4 weeks of tamoxifen treatment plus 2 weeks without tamoxifen. Pneumocytes with the activated form of the inducible KRasG12V oncogene sere selected making use of the fluorescent reporter gene Katushka (located at an independent locus), by detecting Katushka fluorescence. Overall design: Four replicates of each genetic group (Sirt1-WT and Sirt1-Tg) pneumocytes were used for this study. Sirt1-WT were used as reference controls.
Sirt1 protects from K-Ras-driven lung carcinogenesis.
Sex, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Phenotypic, transcriptomic, and genomic features of clonal plasma cells in light-chain amyloidosis.
Specimen part, Disease
View SamplesImmunoglobulin light-chain amyloidosis (AL) is a rare clonal plasma cell (PC) disorder that remains largely incurable. AL and multiple myeloma (MM) share the same cellular origin, but while knowledge about MM PC biology has improved significantly, the same does not apply for AL. Here, we undertook an integrative phenotypic, molecular, and genomic approach to study clonal PCs from 22 newly-diagnosed AL patients. Through principal-component-analysis, we demonstrated highly overlapping phenotypic profiles between AL and MGUS or MM patients. However, in contrast to MM, highly-purified FACSs-sorted clonal PCs in AL (n=9/22) show virtually normal transcriptomes with only 68 deregulated genes as compared to normal PCs, including a few tumor suppressor (CDH1, RCAN) and pro-apoptotic (GLIPR1, FAS) genes. Notwithstanding, clonal PCs in AL (n=11/22) were genomically unstable with a median of 9 copy-number-abnormities (CNAs) per case; many of which similar to those found in MM. Whole-exome sequencing (WES) was performed in three AL patients and revealed a median of 10 non-recurrent mutations per case. Altogether, we showed that although clonal PCs in AL display phenotypic and CNA profiles similar to MM, their transcriptome is remarkably similar to that of normal PCs. First-ever WES revealed the lack of a unifying mutation in AL
Phenotypic, transcriptomic, and genomic features of clonal plasma cells in light-chain amyloidosis.
Specimen part, Disease
View SamplesHistone acetylation and other modifications of the chromatin are important regulators of gene expression and, consequently, may contribute to drug-induced behaviors and neuroplasticity. Previous studies have shown that a reduction on histone deacetylase (HDAC) activity results on the enhancement of some psychostimulant-induced behaviors. In the present study, we extend those seminal findings by showing that the administration of the HDAC inhibitor sodium butyrate enhances morphine-induced locomotor sensitization and conditioned place preference. In contrast, this compound has no effects on the development of morphine tolerance and dependence. Similar effects were observed for cocaine and ethanol-induced behaviors. These behavioral changes were accompanied by a selective boosting of a component of the transcriptional program activated by chronic morphine administration that included circadian clock genes and other genes relevant in addictive behavior. Our results support an specific role for histone acetylation and the epigenetic modulation of transcription at a reduced number of biologically relevant loci on non-homeostatic, long lasting, drug-induced behavioral plasticity. To further investigate the molecular bases of sodium butyrate action on long-lasting behavioral responses to morphine, we screened for potential substrates of their interaction by performing a genome-wide comparison of the striatal transcriptome after chronic administration of morphine in the absence or presence of sodium butyrate.
Selective boosting of transcriptional and behavioral responses to drugs of abuse by histone deacetylase inhibition.
Sex, Age, Specimen part
View SamplesThe adult pancreas is capable of limited regeneration after injury, but has no defined stem cell population. The cell types and molecular signals that govern the production of new pancreatic tissue are not well understood. Here we show that inactivation of the SCF-type E3 ubiquitin ligase substrate recognition component Fbw7 induces pancreatic ductal cells to reprogram into -cells. The induced -cells resemble islet -cells in morphology and histology, express genes essential for -cell function, and release insulin upon glucose challenge. Thus, loss of Fbw7 appears to reawaken an endocrine developmental differentiation program in adult pancreatic ductal cells. Our study highlights the plasticity of seemingly differentiated adult cells, identifies Fbw7 as a master regulator of cell fate decisions in the pancreas, and reveals adult pancreatic duct cells as a latent multipotent cell type.
Loss of Fbw7 reprograms adult pancreatic ductal cells into α, δ, and β cells.
Specimen part, Treatment
View Samples