Histone acetylation and other modifications of the chromatin are important regulators of gene expression and, consequently, may contribute to drug-induced behaviors and neuroplasticity. Previous studies have shown that a reduction on histone deacetylase (HDAC) activity results on the enhancement of some psychostimulant-induced behaviors. In the present study, we extend those seminal findings by showing that the administration of the HDAC inhibitor sodium butyrate enhances morphine-induced locomotor sensitization and conditioned place preference. In contrast, this compound has no effects on the development of morphine tolerance and dependence. Similar effects were observed for cocaine and ethanol-induced behaviors. These behavioral changes were accompanied by a selective boosting of a component of the transcriptional program activated by chronic morphine administration that included circadian clock genes and other genes relevant in addictive behavior. Our results support an specific role for histone acetylation and the epigenetic modulation of transcription at a reduced number of biologically relevant loci on non-homeostatic, long lasting, drug-induced behavioral plasticity. To further investigate the molecular bases of sodium butyrate action on long-lasting behavioral responses to morphine, we screened for potential substrates of their interaction by performing a genome-wide comparison of the striatal transcriptome after chronic administration of morphine in the absence or presence of sodium butyrate.
Selective boosting of transcriptional and behavioral responses to drugs of abuse by histone deacetylase inhibition.
Sex, Age, Specimen part
View SamplesAblation of the Camk4 gene in dopaminoceptive neurons of the brain was performed using the Cre/loxP system, with the recombinase expressed from a BAC-derived Drd1a promoter.
Loss of the Ca2+/calmodulin-dependent protein kinase type IV in dopaminoceptive neurons enhances behavioral effects of cocaine.
No sample metadata fields
View SamplesNumerous CD11b+ myeloid cells are present within the dermis. They are very heterogeneous and can be divided in dermal DCs, tissue monocytes and tissue macrophages. At steady state, only CD11b+ DC migrate from the dermis to the skin draining lymph nodes whereas upon DNFB-induced inflammation, CD11b+ DC as well as dermal monocytes migrated to the lymph nodes. The objective of this study was to use gene expression profiling to rigorously identify the different subsets of dermal CD11b+ myeloid cells at steady state and upon inflammation and to characterize their functional potential.
Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin.
Sex, Age, Specimen part
View SamplesTo understand the transcriptional program by which GR regulates skin development, we performed a microarray analysis using the skin of E18.5 GR-/- and GR+/+ mouse embryos.
Glucocorticoid receptor regulates overlapping and differential gene subsets in developing and adult skin.
Specimen part
View SamplesBackground: Gliomas are the most common type of primary brain tumours, and in this group glioblastomas (GBMs) are the higher-grade gliomas with fast progression and unfortunate prognosis. Two major aspects of glioma biology that contributes to its awful prognosis are the formation of new blood vessels through the process of angiogenesis and the invasion of glioma cells. Despite of advances, two-year survival for GBM patients with optimal therapy is less than 30%. Even in those patients with low-grade gliomas, that imply a moderately good prognosis, treatment is almost never curative. Recent studies have demonstrated the existence of a small fraction of glioma cells with characteristics of neural stem cells which are able to grow in vitro forming neurospheres and that can be isolated in vivo using surface markers such as CD133. The aim of this study was to define the molecular signature of GBM cells expressing CD133 in comparison with non expressing CD133 cells. This molecular classification could lead to the finding of new potential therapeutic targets for the rationale treatment of high grade GBM.
Molecular analysis of ex-vivo CD133+ GBM cells revealed a common invasive and angiogenic profile but different proliferative signatures among high grade gliomas.
Specimen part, Disease
View SamplesCaspases, proteolytic enzymes involved in cell death could play a role independent of cell death in the developing heart
Executioner Caspase-3 and 7 Deficiency Reduces Myocyte Number in the Developing Mouse Heart.
Age, Specimen part
View SamplesWe report the RNAseq data obtained from 50.000-100.000 CD31-/CD45- pneumocytes isolated by FACS from mice harboring a normal dose or one extra copy of the Sirt1 gene, and a tamoxifen-inducible oncogenic KI alelle of KRasG12V after 4 weeks of tamoxifen treatment. Pneumocytes with the activated form of the inducible KRasG12V oncogene sere selected making use of the reporter gene LacZ (located next to the oncogene in the same polycistronic mRNA), by loading CD31-/CD45- pneumocytes with the LacZ-activated fuorogenic molecule FDG prior to FACS sorting. Overall design: Four replicates of each genetic group (Sirt1-WT and Sirt1-Tg) pneumocytes were used for this study. Sirt1-WT were used as reference controls.
Sirt1 protects from K-Ras-driven lung carcinogenesis.
Subject
View SamplesWe report the RNAseq data obtained from 50.000-100.000 CD31-/CD45- pneumocytes isolated by FACS from mice harboring a normal dose or one extra copy of the Sirt1 gene, and a tamoxifen-inducible oncogenic KI alelle of KRasG12V after 4 weeks of tamoxifen treatment plus 2 weeks without tamoxifen. Pneumocytes with the activated form of the inducible KRasG12V oncogene sere selected making use of the fluorescent reporter gene Katushka (located at an independent locus), by detecting Katushka fluorescence. Overall design: Four replicates of each genetic group (Sirt1-WT and Sirt1-Tg) pneumocytes were used for this study. Sirt1-WT were used as reference controls.
Sirt1 protects from K-Ras-driven lung carcinogenesis.
Sex, Subject
View SamplesVariant FhlA133 (Q11H, L14V, Y177F, K245R, M288K, and I342F) had eight- fold higher hydrogen production than FhlA wild-type under 30 min of anaerobic incubation in modified-complex 20 mM formate at 37C. The mechanism by which the FhlA133 mutations increase hydrogen production is by increasing the transcription of all of the genes activated by the native FhlA (FHL complex).
Protein engineering of the transcriptional activator FhlA To enhance hydrogen production in Escherichia coli.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Phenotypic, transcriptomic, and genomic features of clonal plasma cells in light-chain amyloidosis.
Specimen part, Disease
View Samples