refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1117 results
Sort by

Filters

Technology

Platform

accession-icon GSE51615
Expression data from rhesus macaque colon, jejunum, and lung
  • organism-icon Macaca mulatta
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

The mucosa that lines the respiratory and gastrointestinal (GI) tracts is an important portal of entry for pathogens and provides the frontline of immune defense against HIV infection. Using the simian immunodeficiency virus (SIV) rhesus macaque model, we have performed a comparative analysis of host gene expression in the lung and GI mucosa in response to SIV infection and antiretroviral therapy.

Publication Title

Enhanced innate antiviral gene expression, IFN-α, and cytolytic responses are predictive of mucosal immune recovery during simian immunodeficiency virus infection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE51445
Transcription profiling reveals potential mechanisms of dysbiosis in the oral microbiome of rhesus macaques with chronic untreated SIV infection
  • organism-icon Macaca mulatta, Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcription profiling reveals potential mechanisms of dysbiosis in the oral microbiome of rhesus macaques with chronic untreated SIV infection.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Cell line, Treatment

View Samples
accession-icon GSE51436
Expression data from rhesus macaque tongue
  • organism-icon Macaca mulatta
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

A majority of individuals infected with human immunodeficiency virus (HIV) have inadequate access to antiretroviral therapy and ultimately develop debilitating oral infections that often correlate with disease progression. Our study evaluates the potential of simian immunodeficiency virus (SIV) infected rhesus macaques to serve as a non-human primate model for oral manifestations of HIV disease.

Publication Title

Transcription profiling reveals potential mechanisms of dysbiosis in the oral microbiome of rhesus macaques with chronic untreated SIV infection.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE51438
Expression data from rhesus macaque tongue epithelium
  • organism-icon Macaca mulatta
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

A majority of individuals infected with human immunodeficiency virus (HIV) have inadequate access to antiretroviral therapy and ultimately develop debilitating oral infections that often correlate with disease progression. Our study evaluates the potential of simian immunodeficiency virus (SIV) infected rhesus macaques to serve as a non-human primate model for oral manifestations of HIV disease.

Publication Title

Transcription profiling reveals potential mechanisms of dysbiosis in the oral microbiome of rhesus macaques with chronic untreated SIV infection.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE51439
Expression data from human oral epithelial cell line
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

A majority of individuals infected with human immunodeficiency virus (HIV) have inadequate access to antiretroviral therapy and ultimately develop debilitating oral infections that often correlate with disease progression. Our study evaluates the impact of chronic exposure to the pro-inflammatory cytokine, interferon gamma, on the growth and barrier functions of the oral epithelium.

Publication Title

Transcription profiling reveals potential mechanisms of dysbiosis in the oral microbiome of rhesus macaques with chronic untreated SIV infection.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE28177
Expression data from HAART interruption in HIV patients
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We evaluated longitudinal changes in viral replication and emergence of viral variants in the context of T cell homeostasis and gene expression in GALT of three HIV-positive patients who initiated HAART during primary HIV infection but opted to interrupt therapy thereafter. Longitudinal viral sequence analysis revealed that a stable proviral reservoir was established in GALT during primary HIV infection that persisted through early HAART and post-therapy interruption. Proviral variants in GALT and peripheral blood mononuclear cells (PBMCs) displayed low levels of genomic diversity at all times. A rapid increase in viral loads with a modest decline of CD4 T cells in peripheral blood was observed, while gut mucosal CD4 T cell loss was severe following HAART interruption. This was accompanied by increased mucosal gene expression regulating interferon (IFN)-mediated antiviral responses and immune activation, a profile similar to those found in HAART-naive HIV-infected patients.

Publication Title

The gut mucosal viral reservoir in HIV-infected patients is not the major source of rebound plasma viremia following interruption of highly active antiretroviral therapy.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE55359
Expression data from rhesus macaque jejunum
  • organism-icon Macaca mulatta
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

The mucosa that lines the gastrointestinal (GI) tracts is an important portal of entry for pathogens and provides the frontline of immune defense against HIV infection. Epithelial barrier dysfunction during HIV infection has largely been attributed to the rapid and severe depletion of CD4 T cells in the gastrointestinal (GI) tract. In this study, the poential role of small non-coding microRNA (miRNA) to contribute to epithelial dysfunction was investigated in the non-human primate SIV model and microarrays were utilized to determine changes in mucosal gene expression (non-miRNA) that could be correlated to miRNA modulatiolns.

Publication Title

Intestinal epithelial barrier disruption through altered mucosal microRNA expression in human immunodeficiency virus and simian immunodeficiency virus infections.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE139271
Host-microbe interactions following L. plantarum administration in SIV-infected and uninfected rhesus macaques
  • organism-icon Macaca mulatta
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

We used microarrays to detail the global gene expression changes in the ileum of SIV-infected and uninfected macaques following administration of L. plantarum.

Publication Title

PPARα-targeted mitochondrial bioenergetics mediate repair of intestinal barriers at the host-microbe intersection during SIV infection.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE42058
Expression data from CD11c+ mDCs in HIV infection
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

CD11c+ Myeloid Dendritic Cells (mDCs) were isolated from the peripheral blood mononuclear cells (PBMCs) of HIV uninfected and HIV infected subjects.

Publication Title

Chronic HIV infection enhances the responsiveness of antigen presenting cells to commensal Lactobacillus.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE52589
Early SIV infection and effects of pathogenic and commensal enteric bacteria on expression in ileum tissue
  • organism-icon Macaca mulatta
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

We used the ileal loop model to assess the effects of enteric bacteria organisms on host gene expression in intestinal tissue independent of and following early SIV infection. SIV infection in the gut causes rapid and severe immune dysfunction and damage to the intestinal structure, this may alter the intimate interaction with lumenal organisms. This study was performed to determine whether early SIV infection, prior to the depletion of CD4+ T cells, can alter interaction of the host with pathogenic Salmonella serovar Typhimurium (ST) or commensal Lactobacillus plantarum (LP), and to further understand the earliest changes to the intestinal mucosa following SIV infection.

Publication Title

Early mucosal sensing of SIV infection by paneth cells induces IL-1β production and initiates gut epithelial disruption.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact