Although nuclear transfer allows the reprogramming of somatic cells to totipotency, little is known concerning the kinetics by which it takes place or the minimum requirements for its success. Here, we demonstrate that reprogramming can be achieved within a few hours and a single cell-cycle as long as two key constraints on reprogramming are satisfied. First, the recipient cell chromosomes must be removed during mitosis. Second, the nuclear envelope of the donor cell must be broken down and its chromosomes condensed, allowing an embryonic nucleus to be constructed around the incoming chromosomes. If these requirements are not met, then reprogramming fails and embryonic development arrests. These results point to a central role for processes intimately linked to cell division in mediating efficient transitions between transcriptional programs.
Reprogramming within hours following nuclear transfer into mouse but not human zygotes.
Specimen part
View SamplesIdentification of downstream genes of onecut transcriptions factors in the developing retina
Onecut1 and Onecut2 redundantly regulate early retinal cell fates during development.
No sample metadata fields
View SamplesINTRODUCTION. Fixation with formalin, a widely adopted procedure to preserve tissue samples, leads to extensive degradation of nucleic acids and thereby compromises procedures like microarray-based gene expression profiling. We hypothesized that RNA fragmentation is caused by activation of RNAses during the interval between formalin penetration and tissue fixation. To prevent RNAse activation, a series of tissue samples were kept under-vacuum at 4C until fixation and then fixed at 4C, for 24 hours, in formalin followed by 4 hours in ethanol 95%.
Formalin fixation at low temperature better preserves nucleic acid integrity.
Specimen part
View SamplesA-to-I RNA editing levels differ across tissues and cell types, but regulators of the editing process are largely unknown. We used RNA-seq on whole fly brains with different RNA binding proteins knocked down to test for A-to-I RNA editing level differences between controls and knockdowns. Overall design: To screen for editing regulators in the Drosophila brain, we crossed a pan-neuronal Gal4 driver, C155-Gal4, to different UAS-shRNA lines targeting individual RNA binding proteins, extracted RNA and made RNA-seq libraries. We sequenced four total replicates of shGFP controls and two replicates of all RNA binding protein knockdowns.
Zinc Finger RNA-Binding Protein Zn72D Regulates ADAR-Mediated RNA Editing in Neurons.
Sex, Specimen part, Subject
View SamplesMouse embryonic fibroblasts deficient for p53 and expressing mutant RasV12 were infected with lentiviral constructs carrying short hairpin RNAs targeting ARF or a scrambled control. Four days post infection, cells were harvested for microarray analysis.
ARF and p53 coordinate tumor suppression of an oncogenic IFN-β-STAT1-ISG15 signaling axis.
No sample metadata fields
View SamplesAminaphtone, a drug used in the treatment of chronic venous insufficiency (CVI), showed a remarkable role in the modulation of several vasoactive factors, like endothelin-1 and adhesion molecules. We analysed in vitro the effects of Aminaphtone on whole-genome gene expression. ECV304 endothelial cells were stimulated with IL-1 100 U/ml in the presence or absence of Aminaphtone 6 g/ml. Gene expression profiles were compared at 1, 3, and 6 h after stimulation by microarray.
Gene expression profiling reveals novel protective effects of Aminaphtone on ECV304 endothelial cells.
Cell line
View SamplesPrevious studies in our laboratory have shown that low folate diet (control diet with 2mg folate/kg, low folate diet with 0.3mg folate/kg) can induce intestinal tumors in BALB/c mice.
Genes with aberrant expression in murine preneoplastic intestine show epigenetic and expression changes in normal mucosa of colon cancer patients.
Sex, Specimen part, Treatment
View SamplesIn seed plants, leaves are born on radial shoots but unlike shoots they are determinate dorsiventral organs made of flat lamina. YABBY genes are found only in seed plants and in all cases studied, are expressed primarily in lateral organs and in a polar manner. Despite their simple expression, Arabidopsis plants lacking all YABBY gene activities have a wide range of morphological defects in all lateral organs as well as the shoot apical meristem. Here we show that leaves lacking all YABBY activities are initiated as dorsiventral appendages but fail to properly activate lamina programs. In particular, the activation of most CIN-TCPs does not commence, SAM-specific programs are reactivated, and a marginal leaf domain is not established. Altered distribution of auxin signalling and the auxin efflux carrier PIN1, highly reduced venation, initiation of multiple cotyledons, and gradual loss of the SAM accompany these defects. We suggest that YABBY functions were recruited to mould modified shoot systems into flat plant appendages by translating organ polarity into lamina specific programs that include marginal auxin flow and activation a maturation schedule directing determinate growth.
Differentiating Arabidopsis shoots from leaves by combined YABBY activities.
Specimen part
View SamplesNAP - neuroprotective peptide demonstrates increase in neuronal survival when injected into the hippocampus of rats in the model of epilepsy
The microtubule interacting drug candidate NAP protects against kainic acid toxicity in a rat model of epilepsy.
No sample metadata fields
View SamplesGene expression was studied in whole kidneys in a 2 x 2 design. SBH/y were contrasted with SBN/y under basal conditions and after salt loading. Thus, four groups were studied altogether. Five rats were used in each group. Altogether, 20 animals were used, and each animal was studied separately. Gene expression was done in kidney. Differential gene expression was measured 4 weeks after initiation of salt loading. At that time point hypertension invariably evolves fully in SBH/y but not in SBN/y.<br></br><br></br>Affymetrix CHP files are available on request from arrayexpress@ebi.ac.uk
Identification of hypertension-related genes through an integrated genomic-transcriptomic approach.
Sex, Age, Specimen part, Cell line, Subject, Compound
View Samples