refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 196 results
Sort by

Filters

Technology

Platform

accession-icon SRP017173
Quartz-Seq: a simple and highly quantitative method for single-cell RNA-Seq
  • organism-icon Mus musculus
  • sample-icon 65 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Illumina HiSeq 1000

Description

We report novel single-cell RNA-Seq, called Quartz-Seq. Quartz-Seq was simplified method compared with previous methods based on poly-A tailing reaction. Overall design: RNA-seq by illumina TruSeq, KAPA library preparation kit, single-cell Quartz-Seq and single-cell Smart-Seq by illumina HiSeq 2000/1000

Publication Title

Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE111327
Chromatin remodeler CHD7 regulates the stem cell identity of human neural progenitors
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Chromatin remodeler CHD7 regulates the stem cell identity of human neural progenitors.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP127035
Analysis of gene expression profile in the control and CHD7-knockdown hiPSC-derived lt-NES cells (scRNA-Seq)
  • organism-icon Homo sapiens
  • sample-icon 92 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

CHARGE syndrome is a congenital disorder caused by mutations in Chromodomain Helicase DNA-binding domain 7 (CHD7) gene. We performed single cell RNA-seq analysis in CTRL and CHD7-knockdown lt-NES cells. Overall design: Single cell RNA-Seq profiling of control (shCTRL) and CHD7-knockdown (sh410 or sh411) cells.

Publication Title

Chromatin remodeler CHD7 regulates the stem cell identity of human neural progenitors.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE89951
CHD7 specifies stem cell identity and neurogenic potential in neural progenitors by regulating SOX21 and BRN2 expression in human central nervous system
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

We performed a microarray experiment to analyze the transcriptional profile of human iPSC-derived neural stem/progenitor cells to identify CHD7 target genes

Publication Title

Chromatin remodeler CHD7 regulates the stem cell identity of human neural progenitors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36980
Expression data from post mortem Alzheimer's disease brains
  • organism-icon Homo sapiens
  • sample-icon 78 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To identify molecular pathological alterations in AD brains, we performed interspecies comparative microarray analyses using RNAs prepared from postmortem human brain tissues donated for the Hisayama study and hippocampal RNAs from the triple-transgenic mouse model of AD (3xTg-AD)

Publication Title

Altered expression of diabetes-related genes in Alzheimer's disease brains: the Hisayama study.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE36981
Expression data from Alzheimer's disease model mouse
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

To identify molecular pathological alterations in AD brains, we performed interspecies comparative microarray analyses using RNAs prepared from postmortem human brain tissues donated for the Hisayama study and hippocampal RNAs from the triple-transgenic mouse model of AD (3xTg-AD)

Publication Title

Altered expression of diabetes-related genes in Alzheimer's disease brains: the Hisayama study.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE25593
Expression Profiling: during in vitro neural differentiation from mES cells.
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

GeneChip-based screen for genes induced in the initial phase of neural differentiation from ES cells.

Publication Title

Intrinsic transition of embryonic stem-cell differentiation into neural progenitors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12498
Gene expression profiles regulated by Tead2 mutants, Yap, and cell density in NIH3T3 cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Regulation of organ size is important for development and tissue homeostasis. In Drosophila, Hippo signaling controls organ size by regulating the activity of a TEAD transcription factor, Scalloped, through modulation of its coactivator protein Yki. The role of mammalian Tead proteins in growth regulation, however, remains unknown. Here we examined the role of mouse Tead proteins in growth regulation. In NIH3T3 cells, cell density and Hippo signaling regulated the activity of Tead proteins by modulating nuclear localization of a Yki homologue, Yap, and the resulting change in Tead activity altered cell proliferation. Tead2-VP16 mimicked Yap overexpression, including increased cell proliferation, reduced cell death, promotion of EMT, lack of cell contact inhibition, and promotion of tumor formation. Growth promoting activities of various Yap mutants correlated with their Tead-coactivator activities. Tead2-VP16 and Yap regulated largely overlapping sets of genes. However, only a few of the Tead/Yapregulated genes in NIH3T3 cells were affected in Tead1-/-;Tead2-/- or Yap-/- embryos. Most of the previously identified Yap-regulated genes were not affected in NIH3T3 cells or mutant mice. In embryos, levels of nuclear Yap and Tead1 varied depending on cell types. Strong nuclear accumulation of Yap and Tead1 were seen in myocardium, correlating with requirements of Tead1 for proliferation. However, their distribution did not always correlate with proliferation. Taken together, mammalian Tead proteins regulate cell proliferation and contact inhibition as a transcriptional mediator of Hippo signaling, but the mechanisms by which Tead/Yap regulate cell proliferation differ depending on cell types, and Tead, Yap and Hippo signaling may play multiple roles in mouse embryos.

Publication Title

Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP056395
Comparative whole-transcriptomic analysis between normal and AKAP-Lbc-depleted human embryonic stem cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq1500

Description

Human embryonic stem cells (hESCs) have the unique property of immortality, ability to infinitely self-renew and survive in vitro. In contrast to tumor-deribed cells, their immortality are free from any genomic abberations. Instead, they depend on the AKAP-Lbc/Rho signaling cascade. To understand the downstream way, we performed RNA-seq analyses between normal and AKAP-Lbc-depleted hESCs using the doxycyclin-inducible gene silensing strategy. Overall design: We use the genetically modified hESCs in which AKAP-13-targeting shRNA is induced by doxycyclin(dox) treatment. To minimize cell loss during treatment, anti-apoptotic factor Bcl-XL is overexpressed. We collected RNA from dox-treated and untreated cells in biological triplicate. We measured gene expression in these 2 sample groups using RNA-seq (illumina HiSeq) .

Publication Title

Rho-Signaling-Directed YAP/TAZ Activity Underlies the Long-Term Survival and Expansion of Human Embryonic Stem Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE78716
Influence of ATM-mediated DNA damage response on genomic variation in human induced pluripotent stem cells (Affymetrix expression)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Genome instability is a potential limitation to the research and therapeutic application of induced pluripotent stem cells (iPSCs). Observed genomic variations reflect the combined activities of DNA damage, cellular DNA damage response (DDR), and selection pressure in culture. To understand the contribution of DDR on the distribution of copy number variations (CNVs) in iPSCs, we mapped CNVs of iPSCs with mutations in the central DDR gene ATM onto genome organization landscapes defined by genome-wide replication timing profiles. We show that following reprogramming the early and late replicating genome is differentially affected by CNVs in ATM deficient iPSCs relative to wild type iPSCs. Specifically, the early replicating regions had increased CNV losses during retroviral reprogramming. This differential CNV distribution was not present after later passage or after episomal reprogramming. Comparison of different reprogramming methods in the setting of defective DNA damage response reveals unique vulnerability of early replicating open chromatin to retroviral vectors.

Publication Title

Influence of ATM-Mediated DNA Damage Response on Genomic Variation in Human Induced Pluripotent Stem Cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact