refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 196 results
Sort by

Filters

Technology

Platform

accession-icon GSE25593
Expression Profiling: during in vitro neural differentiation from mES cells.
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

GeneChip-based screen for genes induced in the initial phase of neural differentiation from ES cells.

Publication Title

Intrinsic transition of embryonic stem-cell differentiation into neural progenitors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP056395
Comparative whole-transcriptomic analysis between normal and AKAP-Lbc-depleted human embryonic stem cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq1500

Description

Human embryonic stem cells (hESCs) have the unique property of immortality, ability to infinitely self-renew and survive in vitro. In contrast to tumor-deribed cells, their immortality are free from any genomic abberations. Instead, they depend on the AKAP-Lbc/Rho signaling cascade. To understand the downstream way, we performed RNA-seq analyses between normal and AKAP-Lbc-depleted hESCs using the doxycyclin-inducible gene silensing strategy. Overall design: We use the genetically modified hESCs in which AKAP-13-targeting shRNA is induced by doxycyclin(dox) treatment. To minimize cell loss during treatment, anti-apoptotic factor Bcl-XL is overexpressed. We collected RNA from dox-treated and untreated cells in biological triplicate. We measured gene expression in these 2 sample groups using RNA-seq (illumina HiSeq) .

Publication Title

Rho-Signaling-Directed YAP/TAZ Activity Underlies the Long-Term Survival and Expansion of Human Embryonic Stem Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP048990
Comparative transcriptomic analysis of self-organized, in vitro generated optic tissues
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

Embryonic stem (ES) cells have a remarkable capacity to self-organize complex, multi-layered optic cups in vitro via a culture technique called SFEBq. During both SFEBq and in vivo optic cup development, Rax (Rx) expressing neural retina epithelial (NRE) tissues utilize Fgf and Wnt/ß-catenin signalling pathways to differentiate into neural retina (NR) and retinal-pigmented epithelial (RPE) tissues, respectively. How these signaling pathways affect gene expression during optic tissue formation has remained largely unknown, especially at the transcriptome scale. Overall design: We generated Day 10 Rx+ optic tissue using SFEBq, exposed these tissues to either Fgf or Wnt/ß-catenin stimulation, and assayed their gene expression at Days 12 and 15 using RNA-Seq. We measured gene expression in these 5 sample groups in biological triplicate using RNA-seq (Illumina HiSeq) .

Publication Title

Comparative, transcriptome analysis of self-organizing optic tissues.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP049553
Self-organization of polarized cerebellar plate neuroepithelium in three-dimensional culture of human pluripotent stem cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq1500

Description

During cerebellar development, the main portion of the cerebellar plate neuroepithelium (NE) gives birth to Purkinje cells and interneurons, while the germinal zone at its dorsal edge, called the rhombic lip (RL), generates granule cells and cerebellar nuclei neurons. However, it remains elusive how these components work together to generate the intricate structure of the cerebellar anlage. In this study, we found that a polarized cerebellar anlage structure self-organizes in three-dimensional (3D) human ES cell (hESC) culture. This NE is capable of differentiating into electrophysiologically functional Purkinje cells. The addition of FGF19 promotes spontaneous generation of dorsoventrally polarized NE structures containing cerebellar and basal plates. Furthermore, further addition of SDF1 promoted the generation of stratified cerebellar plate NE with RL-like germinal zones self-forming at the edge. Thus, hESC-derived cerebellar progenitors exhibit substantial self-organizing potential for generating a polarized structure reminiscent of the early human cerebellar anlage at the first trimester. Overall design: Examination of mRNA profile in two different treated human ES cells .

Publication Title

Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE72520
Self-patterning of rostral-caudal neuroectoderm requires dual role of Fgf signaling for localized Wnt antagonism
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The neuroectoderm is patterned along a rostral-caudal axis in response to localized factors in the embryo, but exactly how these factors act as positional information for this patterning is not yet fully understood. Here, using the self-organizing properties of mouse embryonic stem cell (ESC), we report that ESC-derived neuroectoderm self-generates a Six3+ rostral and a Irx3+ caudal bipolarized patterning. In this instance, localized Fgf signaling performs dual roles, as it regulates Six3+ rostral polarization at an earlier stage and promotes Wnt signaling at a later stage. The Wnt signaling components are differentially expressed in the polarized tissues, leading to genome-wide Irx3+ caudal-polarization signals. Surprisingly, differentially expressed Wnt agonists and antagonists have essential roles in orchestrating the formation of a balanced rostral-caudal neuroectoderm pattern. Together, our findings provide key processes for dynamic self-patterning and evidence that a temporally and locally regulated interaction between Fgf and Wnt signaling controls self-patterning in ESC-derived neuroectoderm.

Publication Title

Self-patterning of rostral-caudal neuroectoderm requires dual role of Fgf signaling for localized Wnt antagonism.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE36980
Expression data from post mortem Alzheimer's disease brains
  • organism-icon Homo sapiens
  • sample-icon 78 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To identify molecular pathological alterations in AD brains, we performed interspecies comparative microarray analyses using RNAs prepared from postmortem human brain tissues donated for the Hisayama study and hippocampal RNAs from the triple-transgenic mouse model of AD (3xTg-AD)

Publication Title

Altered expression of diabetes-related genes in Alzheimer's disease brains: the Hisayama study.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE36981
Expression data from Alzheimer's disease model mouse
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

To identify molecular pathological alterations in AD brains, we performed interspecies comparative microarray analyses using RNAs prepared from postmortem human brain tissues donated for the Hisayama study and hippocampal RNAs from the triple-transgenic mouse model of AD (3xTg-AD)

Publication Title

Altered expression of diabetes-related genes in Alzheimer's disease brains: the Hisayama study.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE74236
Establishment of Functional Genomics Pipeline in Mouse Epiblast-Like Tissue by Combining Transcriptomic Analysis and Gene Knockdown/Knockin/Knockout, Using RNA Interference and CRISPR/Cas9
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The epiblast (foremost embryonic ectoderm) generates all three germ layers and therefore has crucial roles in the formation of all mammalian body cells. Regulation of epiblast gene expression is poorly understood due to the difficulty of manipulating epiblast tissues in vivo. In the present study, using the self-organizing properties of embryonic stem cells (ESCs), we generated and characterized epiblast-like tissue in three-dimensional (3D) culture. We identified significant genome-wide expression changes in this epiblast-like tissue. Additionally, we identified the significance of the Fgf/Erk and ectoderm formation pathways, using the bioinformatics resource IPA and DAVID. We first focused on Fgf5, which ranked in the top 10 among discovered genes. Toward functional analysis of Fgf5, we developed efficient methods of genome engineering (CRISPR/Cas9) and RNA interference (RNAi). Notably, we show one-step generation of an Fgf5 reporter line, null and in/del mutants. Furthermore, mutation types correlated well with CRISPR/Cas9 activity. For time- and dose-dependent depletion of Fgf5 over the course of development, we generated an ESC line harboring a drug-inducible short hairpin RNA cassette integrated by the Tol2 transposon system (pRNAi). Our methods provide a framework for a broad array of applications in the areas of mammalian genetics and molecular biology to understand development and to improve future therapeutics.

Publication Title

Establishment of Functional Genomics Pipeline in Mouse Epiblast-Like Tissue by Combining Transcriptomic Analysis and Gene Knockdown/Knockin/Knockout, Using RNA Interference and CRISPR/Cas9.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE152139
A novel model of chronic limb ischemia with translational significance enables proper evaluation of therapeutic angiogenesis
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Clariom S Array (clariomsmouse)

Description

We aimed to develop a novel chronic and severe hindlimb ischemia mice model to properly evaluate the therapeutic effects of drug candidates in translational research for critical limb ischemia treatments.

Publication Title

A novel model of chronic limb ischemia to therapeutically evaluate the angiogenic effects of drug candidates.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE37842
Generation and maintenance of hiPSCs on PCM-DM
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human ES cells (hESCs) and human induced pluripotent stem cells (hiPSCs) are usually generated and maintained on living feeder cells like mouse embryonic fibroblasts or on a cell-free substrate like Matrigel. For clinical applications, a quality-controlled, xenobiotic-free culture system is required to minimize risks from contaminating animal-derived pathogens and immunogens. We previously reported that the pericellular matrix of decidua-derived mesenchymal cells (PCM-DM) is an ideal human-derived substrate on which to maintain hiPSCs/hESCs. In this study, we examined whether PCM-DM could be used for the generation and long-term stable maintenance of hiPSCs. Decidua-derived mesenchymal cells (DMCs) were reprogrammed by the retroviral transduction of four factors (OCT4, SOX2, KLF4, c-MYC) and cultured on PCM-DM. The established hiPSC clones expressed alkaline phosphatase, hESC-specific genes and cell-surface markers, and differentiated into three germ layers in vitro and in vivo. At over 20 passages, the hiPSCs cultured on PCM-DM held the same cellular properties with genome integrity as those at early passages. Global gene expression analysis showed that the GDF3, FGF4, UTF1, and XIST expression levels varied during culture, and GATA6 was highly expressed under our culture conditions; however, these gene expressions did not affect the cells pluripotency. PCM-DM can be conveniently prepared from DMCs, which have a high proliferative potential. Our findings indicate that PCM-DM is a versatile and practical human-derived substrate that can be used for the feeder-cell-free generation and long-term stable maintenance of hiPSCs.

Publication Title

Feeder-free generation and long-term culture of human induced pluripotent stem cells using pericellular matrix of decidua derived mesenchymal cells.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact