Adoptive T cell therapy (ACT) is a promising therapeutic approach for cancer patients. The use of allogeneic T cell grafts will improve its applicability and versatility provided that inherent allogeneic responses are controlled. T cell activation is finely regulated by multiple signaling molecules that are transcriptionally controlled by epigenetic mechanisms. Through extensive chemical probe screening, we found that inhibiting DOT1L, a histone H3-lysine 79 methyltransferase, alleviated allogeneic T cell responses.
DOT1L inhibition attenuates graft-versus-host disease by allogeneic T cells in adoptive immunotherapy models.
Specimen part, Subject
View SamplesAdoptive T cell therapy (ACT) is a promising therapeutic approach for cancer patients. The use of allogeneic T cell grafts will improve its applicability and versatility provided that inherent allogeneic responses are controlled. Through extensive chemical probe screening, we found that inhibiting DOT1L, a histone H3-lysine 79 methyltransferase, alleviated allogeneic T cell responses. DOT1L inhibition with SGC0946 selectively ameliorated low-avidity T cell responses but not high-avidity antitumor T cell responses mediated by the high-affinity T cell receptor or chimeric antigen receptor. The inhibition of DOT1L in T cells prevented the development of graft-versus-host disease while retaining potent antitumor activity in xenogeneic ACT models. These results suggest that DOT1L inhibition may enable the safe and effective use of allogeneic antitumor T cells by suppressing unwanted immunological reactions in ACT. Overall design: To investigate how DOT1L inhibition modulates the T cell activation signal, we compared gene expression profiles between SGC0946-treated or DMSO-treated (control) T cells by RNA-sequencing analysis. Human CD8+ T cells derived from three different healthy donors were cultured in the presence of SGC0946 or DMSO. Total RNA was collected from each sample and gene expression profiles were analyzed by RNA-sequencing using an Illumina HiSeq 2500 sequencer.
DOT1L inhibition attenuates graft-versus-host disease by allogeneic T cells in adoptive immunotherapy models.
Specimen part, Treatment, Subject
View SamplesJMJD2B is expressed in a high proportion of human breast tumors, and the expression levels significantly correlate with estrogen receptor (ER) positivity. To assess the effect of JMJD2B depletion on the ER signaling pathway, we performed genome-wide gene expression analysis using the Affymetrix Human Gene 1.0 ST array.
Histone demethylase JMJD2B functions as a co-factor of estrogen receptor in breast cancer proliferation and mammary gland development.
Sex, Specimen part, Cell line, Treatment
View SamplesTo identify molecular pathological alterations in AD brains, we performed interspecies comparative microarray analyses using RNAs prepared from postmortem human brain tissues donated for the Hisayama study and hippocampal RNAs from the triple-transgenic mouse model of AD (3xTg-AD)
Altered expression of diabetes-related genes in Alzheimer's disease brains: the Hisayama study.
Sex, Age, Specimen part
View SamplesTo identify molecular pathological alterations in AD brains, we performed interspecies comparative microarray analyses using RNAs prepared from postmortem human brain tissues donated for the Hisayama study and hippocampal RNAs from the triple-transgenic mouse model of AD (3xTg-AD)
Altered expression of diabetes-related genes in Alzheimer's disease brains: the Hisayama study.
Sex, Age, Specimen part
View SamplesGeneChip-based screen for genes induced in the initial phase of neural differentiation from ES cells.
Intrinsic transition of embryonic stem-cell differentiation into neural progenitors.
No sample metadata fields
View SamplesWe identified tazarotene-induced gene 1 (TIG1) as a potential tumorigenic gene in IBC. To investigate the underlying mechanism by which TIG1 promotes tumor growth and invasiveness of IBC cells, we first sought to identify TIG1 functional partners by using DNA microarray analysis to compare gene expression profiles between SUM149 cells transfected with control siRNA and SUM149 cells transfected with siRNA targeting TIG1. We identified receptor tyrosine kinase Axl as a functional partner of TIG1.
TIG1 promotes the development and progression of inflammatory breast cancer through activation of Axl kinase.
Cell line
View SamplesRegulation of organ size is important for development and tissue homeostasis. In Drosophila, Hippo signaling controls organ size by regulating the activity of a TEAD transcription factor, Scalloped, through modulation of its coactivator protein Yki. The role of mammalian Tead proteins in growth regulation, however, remains unknown. Here we examined the role of mouse Tead proteins in growth regulation. In NIH3T3 cells, cell density and Hippo signaling regulated the activity of Tead proteins by modulating nuclear localization of a Yki homologue, Yap, and the resulting change in Tead activity altered cell proliferation. Tead2-VP16 mimicked Yap overexpression, including increased cell proliferation, reduced cell death, promotion of EMT, lack of cell contact inhibition, and promotion of tumor formation. Growth promoting activities of various Yap mutants correlated with their Tead-coactivator activities. Tead2-VP16 and Yap regulated largely overlapping sets of genes. However, only a few of the Tead/Yapregulated genes in NIH3T3 cells were affected in Tead1-/-;Tead2-/- or Yap-/- embryos. Most of the previously identified Yap-regulated genes were not affected in NIH3T3 cells or mutant mice. In embryos, levels of nuclear Yap and Tead1 varied depending on cell types. Strong nuclear accumulation of Yap and Tead1 were seen in myocardium, correlating with requirements of Tead1 for proliferation. However, their distribution did not always correlate with proliferation. Taken together, mammalian Tead proteins regulate cell proliferation and contact inhibition as a transcriptional mediator of Hippo signaling, but the mechanisms by which Tead/Yap regulate cell proliferation differ depending on cell types, and Tead, Yap and Hippo signaling may play multiple roles in mouse embryos.
Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling.
No sample metadata fields
View SamplesWe found that a H3K4 specific histone methyltransferase MLL1, a mammalian homologue of Drosophila trithorax, is essential for circadian transcription. MLL1 is in a complex with CLOCK:BMAL1 and contributes to their rhythmic recruitment to circadian promoters and cyclic H3K4 tri-metylation. To analyze the function of MLL1 on circadian gene regulation, we performed comparative microarray analysis of global gene expression levels in WT and MLL1-deficient MEF, at two different circadian time points (CT18 and CT30). This analysis identified several genes whose expression levels were remarkably changed between CT18 and CT30 in WT and MLL1-KO MEF. Typical clock-regulated genes such as Per2, Per3, Bmal1, or Dbp were found to be changing in WT but not in MLL1-KO MEFs.
The histone methyltransferase MLL1 permits the oscillation of circadian gene expression.
Specimen part, Time
View SamplesHuman embryonic stem cells (hESCs) have the unique property of immortality, ability to infinitely self-renew and survive in vitro. In contrast to tumor-deribed cells, their immortality are free from any genomic abberations. Instead, they depend on the AKAP-Lbc/Rho signaling cascade. To understand the downstream way, we performed RNA-seq analyses between normal and AKAP-Lbc-depleted hESCs using the doxycyclin-inducible gene silensing strategy. Overall design: We use the genetically modified hESCs in which AKAP-13-targeting shRNA is induced by doxycyclin(dox) treatment. To minimize cell loss during treatment, anti-apoptotic factor Bcl-XL is overexpressed. We collected RNA from dox-treated and untreated cells in biological triplicate. We measured gene expression in these 2 sample groups using RNA-seq (illumina HiSeq) .
Rho-Signaling-Directed YAP/TAZ Activity Underlies the Long-Term Survival and Expansion of Human Embryonic Stem Cells.
No sample metadata fields
View Samples