We created a rat renal congestion model and investigated the effect of renal congestion on hemodynamics and molecular mechanisms. The inferior vena cava (IVC) between the renal veins was ligated by suture in male Sprague-Dawley rats to increase upstream IVC pressure and induce congestion in the left kidney only. Left kidney congestion reduced renal blood flow, glomerular filtration rate, and increased renal interstitial hydrostatic pressure. Tubulointerstitial and glomerular injury and medullary thick ascending limb hypoxia were observed only in the congestive kidneys. Molecules related to extracellular matrix expansion, tubular injury, and focal adhesion were upregulated in microarray analysis. Renal decapsulation ameliorated the tubulointerstitial injury. Electron microscopy captured pericyte detachment in the congestive kidneys. Transgelin and platelet-derived growth factor receptors, as indicators of pericyte-myofibroblast transition, were upregulated in the pericytes and the adjacent interstitium. With the compression of the peritubular capillaries and tubules, hypoxia and physical stress induce pericyte detachment, which could result in extracellular matrix expansion and tubular injury in renal congestion.
Pathophysiological and molecular mechanisms involved in renal congestion in a novel rat model.
Sex, Specimen part
View SamplesThe purpose of this experiment was to compare the gene expression pattern between wild-type and Trib1-deficient macrophages in response to LPS.
Enhanced TLR-mediated NF-IL6 dependent gene expression by Trib1 deficiency.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells.
Specimen part
View SamplesIt remains controversial whether human induced pluripotent stem cells (hiPSCs) are distinct from human embryonic stem cells (hESCs) in their molecular signatures and differentiation properties. We examined the gene expression and DNA methylation of 49 hiPSC and 10 hESC lines and identified no molecular signatures that distinguished hiPSCs from hESCs. Comparisons of the in vitro directed neural differentiation of 40 hiPSC and four hESC lines showed that most hiPSC clones were comparable to hESCs. However, in seven hiPSC clones, significant amount of undifferentiated cells persisted even after neural differentiation and resulted in teratoma formation when transplantated into mouse brains. These differentiation-defective hiPSC clones were marked by higher expression of several genes, including those expressed from long terminal repeats of human endogenous retroviruses. These data demonstrated that many hiPSC clones are indistinguishable from hESCs, while some defective hiPSC clones need to be eliminated prior to their application for regenerative medicine.
Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells.
Specimen part
View SamplesOral cancer kills about 1 person every hour each day in the United States and is the 6th most prevalent cancer worldwide. In this study we utilized existing microarray data from a prior oral cancer study to examine the role of chronic pro-inflammatory mediators in oral carcionogenesis by comparing gene expression in oral tumors with adjacent non-tumor oral tissue from the same patient
Deletion of macrophage migration inhibitory factor inhibits murine oral carcinogenesis: Potential role for chronic pro-inflammatory immune mediators.
Disease, Subject
View SamplesBackground: Skeletal muscle constitutes a significant portion of total body mass and is a major regulator of systemic metabolism as it serves as the major site for glucose disposal and the main reservoir for amino acids. With aging, cachexia, starvation, and myositis, there is a preferential loss of fast glycolytic muscle fibers. We previously reported a mouse model in which a constitutively-active Akt transgene is induced to express in a subset of muscle groups leading to the hypertrophy of type IIb myofibers with an accompanying increase in strength. This muscle growth protects mice in various cardio-metabolic disease models, but little is known about the underlying cellular and molecular mechanisms by which fast-twitch muscle impacts disease processes and regulates distant tissues. Purpose: In the present study, poly(A)+ tail mRNA-seq was performed to characterize the transcriptome of the hypertrophic gastrocnemius muscle from Akt1-transgenic mice. Results: Pathway analysis for the 3,481 differentially expressed genes in muscle identified enriched signaling pathways involving growth, cell cycle regulation, and inflammation. Combined metabolomics and transcriptomic analyses revealed that Akt1-induced muscle growth mediated a metabolic shift involving reductions in glycolysis and oxidative phosphorylation, but enhanced pentose phosphate pathway activation and increased branch chain amino acid accumulation. Signal peptide prediction analysis revealed 241 differentially expressed in muscle transcripts that potentially encode secreted proteins. A number of these secreted factors have signaling properties that are consistent with the myogenic, metabolic and cardiovascular-protective properties that have previously been associated with type IIb muscle growth. Conclusions: These data reveal that enhanced Akt signaling promotes the activation of the pentose phosphate and the accumulation of branched amino acids that are important for the production of nucleic acids and proteins. Numerous known and novel transcripts potentially encoding muscle secreted proteins were identified, indicating the importance of fast-twitch muscle in inter-tissue communication. Overall design: mRNA profiles of adult muscle growth from four muscle-specific conditional Akt transgenic (DTG) and four littermate control mice (1256[3Emut]Mck-rtTA) were generated by deep sequencing using Illumina HiSeq.
RNA-seq and metabolomic analyses of Akt1-mediated muscle growth reveals regulation of regenerative pathways and changes in the muscle secretome.
Age, Specimen part, Cell line, Subject
View SamplesIn the present study, we hypothesized that C/EBPa (CCAAT/enhancer-binding protein alpha) plays a role in cell regeneration in response to bronchiolar epithelial cell injury. C/EBPa mediated ciliated cell regeneration after naphthalene bronchiolar epithelial cell injury in vivo. Furthermore, we demonstrated that C/EBPa regulates protease/anti-protease balance after lung injury, and intratracheal treatment with anti-protease (BPTI) restored ciliated cell regeneration after naphthalene injury in CebpaD/D mice.
CCAAT/enhancer binding protein-α regulates the protease/antiprotease balance required for bronchiolar epithelium regeneration.
Specimen part, Treatment
View SamplesNasu-Hakola disease (NHD), also designated polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL), is a rare autosomal recessive disorder characterized by progressive presenile dementia and formation of multifocal bone cysts, caused by a loss-of-function mutation of DAP12 or TREM2. TREM2 and DAP12 constitute a receptor/adaptor complex expressed on osteoclasts, dendritic cells, macrophages, monocytes, and microglia. At present, the precise molecular mechanisms underlying development of leukoencephalopathy and bone cysts in NHD remain largely unknown. We established THP-1 human monocyte clones that stably express small interfering RNA (siRNA) targeting DAP12 for serving as a cellular model of NHD. Genome-wide transcriptome analysis identified a set of 22 genes consistently downregulated in DAP12 knockdown cells. They constituted the molecular network closely related to the network defined by cell-to-cell signaling and interaction, hematological system development and function, and inflammatory response, where NF-kappaB acts as a central regulator. These results suggest that a molecular defect of DAP12 in human monocytes deregulates the gene network pivotal for maintenance of myeloid cell function in NHD. We found that both DAP12 knockdown and control clones were capable of equally responding to phorbol 12-myristate 13-acetate (PMA), a known inducer of morphological differentiation of THP-1 cells, by exhibiting almost similar gene expression profiles between both, following a 24-hour exposure to 50 nM PMA.
Gene expression profile of THP-1 monocytes following knockdown of DAP12, a causative gene for Nasu-Hakola disease.
Specimen part
View SamplesNasu-Hakola disease (NHD), also designated polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL), is a rare autosomal recessive disorder characterized by progressive presenile dementia and formation of multifocal bone cysts, caused by a loss-of-function mutation of DAP12 or TREM2. TREM2 and DAP12 constitute a receptor/adaptor complex expressed on osteoclasts, dendritic cells, macrophages, monocytes, and microglia. At present, the precise molecular mechanisms underlying development of leukoencephalopathy and bone cysts in NHD remain largely unknown. We established THP-1 human monocyte clones that stably express small interfering RNA (siRNA) targeting DAP12 for serving as a cellular model of NHD. Genome-wide transcriptome analysis identified a set of 22 genes consistently downregulated in DAP12 knockdown cells. They constituted the molecular network closely related to the network defined by cell-to-cell signaling and interaction, hematological system development and function, and inflammatory response, where NF-kappaB acts as a central regulator. These results suggest that a molecular defect of DAP12 in human monocytes deregulates the gene network pivotal for maintenance of myeloid cell function in NHD.
Gene expression profile of THP-1 monocytes following knockdown of DAP12, a causative gene for Nasu-Hakola disease.
Specimen part, Cell line
View SamplesThe purpose of this study was to isolate NCSCs from oral mucosa using the neurosphere technique.
Sphere-Derived Multipotent Progenitor Cells Obtained From Human Oral Mucosa Are Enriched in Neural Crest Cells.
Sex, Age, Specimen part
View Samples