Glud1 (Glutamate dehydrogenase 1) transgenic mice release more excitatory neurotransmitter glutamate to synaptic cleft throughout lifespan.
Gene expression patterns in the hippocampus during the development and aging of Glud1 (Glutamate Dehydrogenase 1) transgenic and wild type mice.
Specimen part
View SamplesEssential fatty acids (FA) are not only energy-rich molecules; they are also an important component of the membrane bilayer and recently have been implicated in induction of fatty acid synthase (FAS) and other genes. Using gene chip analysis, we have found that arachidonic acid (AA), an omega-6 fatty acid, induced 11 genes that are regulated by NFkappaB. We verified gene induction by omega-6 fatty acids including COX2, IKBA, NFKB, GMCSF, IL1B, CXCL1, TNFA, IL6, LTA, IL8, PPARG, and ICAM1 using qRTPCR. PGE2 synthesis was increased within 5min of addition of AA. Analysis of upstream signal transduction showed that within 5min of FA addition, phophatidylinositol 3-kinase (PI3K) was significantly activated followed by activation of Akt at 30min. ERK1 and 2, p38, and SAPK/JNK were not phosphorylated after omega-6 FA addition. Thirty minutes after FA addition, we found a significant 3-fold increase in translocation of NFkappaB transcription factor to the nucleus. Addition of non-steroidal anti-inflammatory drug (NSAID) caused a decrease in cox-2 protein synthesis, PGE2 synthesis as well as inhibition of PI3K activation. We have previously shown that AA induced proliferation is also blocked (P<0.001) by PI3K inhibitor LY294002. LY294002 also significantly inhibited the AA induced gene expression of COX2, IL1B, GMCSF, and ICAM1. Taken together, the data suggests that AA via conversion to PGE2 plays an important role in stimulation of growth related genes and proliferation via PI3K signaling and NFkappaB translocation to the nucleus.
Arachidonic acid activates phosphatidylinositol 3-kinase signaling and induces gene expression in prostate cancer.
No sample metadata fields
View SamplesMesenchyme-derived cells in the human airway wall including airway smooth muscle cells, fibroblasts and myofibroblasts are known to play important roles in airway remodeling. The lack of specific phenotypic markers makes it difficult to define these cell populations in primary cultures. The objectives of this study were to evaluate reported markers and to identify novel markers to define these cell types.
Can lineage-specific markers be identified to characterize mesenchyme-derived cell populations in the human airways?
Specimen part
View SamplesAntioxidants are widely used to protect cells from damage induced by reactive oxygen species (ROS). The concept that antioxidants can help fight cancer is deeply rooted in the general population, promoted by the food supplement industry, and supported by some scientific studies. However, clinical trials have reported inconsistent results. Here, we show that supplementing the diet with the antioxidants N-acetylcysteine (NAC) and vitamin E markedly increases tumor progression and reduces survival in mouse models of B-RAF- and K-RAS-induced lung cancer. RNA sequencing revealed that NAC and vitamin E, which are structurally unrelated, produce highly coordinated changes in tumor transcriptome profiles, dominated by reduced expression of endogenous antioxidant genes. NAC and vitamin E increase tumor cell proliferation by reducing ROS, DNA damage, and p53 expression in mouse and human lung tumor cells. Inactivation of p53 increases tumor growth to a similar degree as antioxidants and abolishes the antioxidant effect. Thus, antioxidants accelerate tumor growth by inactivating the ROS-p53 axis. Because p53 inactivation occurs late in tumor progression, antioxidants may accelerate the growth of early tumors or precancerous lesions in high-risk populations such as smokers and patients with chronic obstructive pulmonary disease who receive NAC to relieve mucus production. Overall design: There were 3 experimental groups (untreated, NAC-treated and Vitamin E-treated. Each group consisted of 5 animals, and from each animal we harvested 2 tumor samples. Hence, in total 3x10=30 samples were profiled.
Antioxidants accelerate lung cancer progression in mice.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells.
Specimen part, Cell line, Treatment, Subject
View SamplesTyrosine kinase inhibitors (TKIs), despite efficacy as anti-cancer therapies, are associated with cardiovascular side effects ranging from induced arrhythmias to heart failure. We have utilized patient-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), generated from 11 healthy individuals and 2 patients receiving cancer treatment, to screen FDA-approved TKIs for cardiotoxicities by measuring alterations in cardiomyocyte viability, contractility, electrophysiology, calcium handling, and signaling. With these data, we generated a cardiac safety index to assess cardiotoxicities of existing TKIs. Many TKIs with a low cardiac safety index exhibit cardiotoxicity in patients. We also derived endothelial cells (hiPSC-ECs) and cardiac fibroblasts (hiPSC-CFs) to examine cell type-specific cardiotoxicities. Using high-throughput screening, we determined that VEGFR2/PDGFR-inhibiting TKIs caused cardiotoxicity in hiPSC-CMs, hiPSC-ECs, and hiPSC-CFs. Using phosphoprotein analysis, we determined that VEGFR2/PDGFR-inhibiting TKIs led to a compensatory increase in cardioprotective insulin and insulin-like growth factor (IGF) signaling in hiPSC-CMs. Activating cardioprotective signaling with exogenous insulin or IGF1 improved hiPSC-CM viability during co-treatment with cardiotoxic VEGFR2/PDGFR-inhibiting TKIs. Thus, hiPSC-CMs can be used to screen for cardiovascular toxicities associated with anti-cancer TKIs, correlating with clinical phenotypes. This approach provides unexpected insights, as illustrated by our finding that toxicity can be alleviated via cardioprotective insulin/IGF signaling.
High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells.
Treatment, Subject
View SamplesChronic infection with the bacterial pathogen Helicobacter pylori is a risk factor for the development of gastric cancer, yet remains asymptomatic in a majority of individuals. We report here that the C57Bl6 mouse model of experimental infection with the closely related H. felis recapitulates this wide range in host susceptibility. A majority of infected mice develop premalignant lesions such as gastric atrophy, compensatory epithelial hyperplasia and intestinal metaplasia, whereas a minority is completely protected from preneoplasia. Protection is associated with the failure to mount an IFN-gamma response to the infection and an associated high Helicobacter burden. We demonstrate that IFN-gamma is essential for clearance of Helicobacter, but also mediates the formation of preneoplastic lesions. We further provide evidence that IFN-gamma triggers a specific transcriptional program in murine gastric epithelial cells in vitro and in vivo, and induces their preferential transformation to the hyperplastic phenotype. In summary, our data suggest a dual role for IFN-gamma in Helicobacter pathogenesis that could provide an explanation for the differential susceptibility to H. pylori-induced gastric pathology in the human population.
The CD4+ T cell-mediated IFN-gamma response to Helicobacter infection is essential for clearance and determines gastric cancer risk.
Treatment
View SamplesPurpose: The goal of this study is to analyze the transcriptional pathways regulated by Fbxo22 and Keap1 in mouse lung adeno carcinoma cells. Methods: mouse lung adeno carcinoma cells either Keap1 wild type (KP) or mutant (KPK), have been transfected for 3 days with siRNA targeting Fbxo22. Knock down efficiency has been evaluated by western blot (using specific antibody for Fbxo22) and qPCR (using specific oligos for Fbxo22) . Results: The transcriptomic analysis helps us to support our finding that loss of either Keap1 or Fbxo22 induces metastases Overall design: All 12 samples generated by deep sequencing in triplicate
Nrf2 Activation Promotes Lung Cancer Metastasis by Inhibiting the Degradation of Bach1.
Specimen part, Subject
View SamplesChildhood T-ALL samples were compared with thymocyte subsets
Deregulated WNT signaling in childhood T-cell acute lymphoblastic leukemia.
Specimen part
View SamplesTranslating ribosome affinity purification technology was used to isolate mRNAs from cerebellar Purkinje neurons from control (Pcp2-BacTrap; Rbm17 f/+) and mutant (Pcp2-BacTRAP; Pcp2-Cre; Rbm17 f/-) mice. Overall design: RNA isolation was performed when animals were four-weeks-old (n=3 animals per genotype). Using NuGEN Ovation RNA-Seq System v2, purified double-stranded cDNA was generated from 10 ng of total RNA and amplified using both 3' poly (A) selection and random priming. 2 µg of each sample was sheared using the Covaris S2 focused-ultrasonicator following the manufacturer's protocol to obtain a final library with insert size of 400 bp. The sheared samples were quantified using the NanoDrop ND-1000 spectrophotometer and Invitrogen Qubit 2.0 DNA quantitation assay. The fragment sizes were confirmed on the Agilent Bioanalyzer to verify proper shearing. A double-stranded DNA library was produced using Illumina TruSeq DNA library preparation system and the sequencing was run on a HiSeq 2500 system.
Extensive cryptic splicing upon loss of RBM17 and TDP43 in neurodegeneration models.
Specimen part, Cell line, Subject
View Samples