refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3078 results
Sort by

Filters

Technology

Platform

accession-icon GSE20324
Gene Bionetwork Analysis of Ovarian Primordial Follicle Development
  • organism-icon Rattus norvegicus
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Ovarian primordial follicles are critical for female reproduction and comprise a finite pool of gametes arrested in development. A systems biology approach was used to identify regulatory gene networks essential for primordial follicle development. Transcriptional responses to eight different growth factors known to influence primordial follicles were used to construct a bionetwork of regulatory genes involved in primordial follicle development. Over 1500 genes were found to be regulated by the various growth factors and a network analysis identified critical gene modules involved in a number of signaling pathways and cellular processes. A set of 55 genes was identified as potential critical regulators of these gene modules, and a subnetwork associated with development was determined. Within the network two previously identified regulatory genes were confirmed (i.e. Pdgfa and Fgfr2) and a new factor was identified, connective tissue growth factor (CTGF). CTGF was tested in ovarian organ cultures and found to stimulate primordial follicle development. Therefore, the relevant gene network associated with primordial follicle development was validated and the critical genes and pathways involved in this process were identified. This is one of the first applications of network analysis to a normal developmental process. These observations provide insights into potential therapeutic targets for preventing ovarian disease and promoting female reproduction.

Publication Title

Gene bionetwork analysis of ovarian primordial follicle development.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon SRP063600
Deciphering H3K4me3 Broad Domains Associated With Gene Regulatory Networks and Conserved Epigenomic Landscapes in the Human Brain [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Trimethylated histone H3-lysine 4 is primarily distributed in the form of sharp peaks, extending in neuronal chromatin on average only across 500-1500 base pairs mostly in close proximity to annotated transcription start sites. To explore whether H3K4me3 peaks could also extend across much broader domains, we undertook a detailed analysis of broadest domain cell-type specific H3K4me3 peaks in ChIP-seq datasets from sorted neuronal and non-neuronal nuclei in human, non-human primate and mouse prefrontal cortex (PFC), and blood for comparison. Overall design: We collected separately cortical gray (GM) and subcortical white matter (WM) from 6 adult human subjects without neurological disease and extracted total RNA processed by the RNA-Seq approach.

Publication Title

Deciphering H3K4me3 broad domains associated with gene-regulatory networks and conserved epigenomic landscapes in the human brain.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE92988
Expression data from microRNA-520f transfected PANC-1 pancreas carcinoma cells.
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

MicroRNA-520f regulates EMT, as it activates CDH1 (mRNA) and E-cadherin (protein) expression, and it suppresses tumor cell invasion. We have characterized miR-520f target genes through whole genome transcriptional profiling of miRNA transfected pancreas cancer cells (PANC-1).

Publication Title

miRNA-520f Reverses Epithelial-to-Mesenchymal Transition by Targeting <i>ADAM9</i> and <i>TGFBR2</i>.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE72149
Autism-like syndrome is induced in mice by pharmacological suppression of BET proteins
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Studies investigating the causes of autism spectrum disorder (ASD) point to genetic as well as epigenetic mechanisms of the disease. Identification of epigenetic processes that contribute to ASD development and progression is of major importance and may lead to the development of novel therapeutic strategies. Here we identify the bromodomain and extra-terminal domain containing transcriptional regulators (BETs) as epigenetic drivers of an ASD-like disorder in mice. We found that the pharmacological suppression of the BET proteins by a novel, highly selective and brain-permeable inhibitor, I-BET858, leads to selective suppression of neuronal gene expression followed by the development of an autism-like syndrome in mice. Many of the I-BET858 affected genes have been linked to ASD in humans thus suggesting the key role of the BET-controlled gene network in ASD. Our studies also suggest that environmental factors controlling BET proteins or their target genes may contribute to the epigenetic mechanism of ASD.

Publication Title

Autism-like syndrome is induced by pharmacological suppression of BET proteins in young mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP165642
Biology and Bias in Cell Type-Specific RNAseq of Nucleus Accumbens Medium Spiny Neurons
  • organism-icon Mus musculus
  • sample-icon 43 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Isolation of cell populations is untangling complex biological interactions, but studies comparing methodologies lack in vivo complexity and draw limited conclusions about the types of transcripts identified by each technique. Furthermore, few studies compare FACS-based techniques to ribosomal affinity purification, and none do so genome-wide. We addressed this gap by systematically comparing nuclear-FACS, whole cell-FACS, and RiboTag affinity purification in the context of D1 or D2 dopamine receptor-expressing medium spiny neuron (MSN) subtypes of the nucleus accumbens (NAc), a key brain reward region. We find that nuclear-FACS-seq generates a substantially longer list of differentially expressed genes between these cell types, and a significantly larger number of neuropsychiatric GWAS hits than the other two methods. RiboTag-seq has much lower coverage of the transcriptome than the other methods, but very efficiently distinguishes D1- and D2-MSNs. We also demonstrate differences between D1- and D2-MSNs with respect to RNA localization, suggesting fundamental cell type differences in mechanisms of transcriptional regulation and subcellular transport of RNAs. Together, these findings guide the field in selecting the RNAseq method that best suits the scientific questions under investigation. Overall design: Forty-nine samples constituting 39 samples from male mice: 16 whole cell-FACS (D1 n=9, D2 n=7), 11 nuclear-FACS (D1 n=6, D2 n=5), and 12 RiboTag (D1 n=6, D2 n=6), and 10 samples from female mice (D1 n=5, D2 n=5).

Publication Title

Biology and Bias in Cell Type-Specific RNAseq of Nucleus Accumbens Medium Spiny Neurons.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE59557
Expression data of in vitro generated regulatory T cells overexpressing E47
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

E47 represses Foxp3 transcription, albeit indirectly through the activation of unknown negative regulatory of Foxp3 transcription.

Publication Title

Id3 Maintains Foxp3 Expression in Regulatory T Cells by Controlling a Transcriptional Network of E47, Spi-B, and SOCS3.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE16974
Retinal gene expression in Egr-1 knock-out mice during development (p30 and p42)
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In chicks, the avian homologue of the early growth response protein-1 (ZENK) has been shown to be increased in a special cell type of the retina, the glucagonergic amacrine cells, under conditions that lead to a reduction in eye growth (myopic defocus, recovery of myopia) and decreased under conditions that enhance ocular growth (hyperopic defocus, form-deprivation). The investigation of Egr-1 knock-out mice showed that homozygous knock-out mice with no functional Egr-1 protein developed relative axial myopia at the age of 42 and 56 days, compared to heterozygous- and wildtype Egr-1 knock-out mice.

Publication Title

Microarray analysis of retinal gene expression in Egr-1 knockout mice.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE11439
Retinal gene expression in chicks during imposed myopic defocus
  • organism-icon Gallus gallus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

The retina plays an important regulatory role in ocular growth. To screen for new retinal candidate genes that could be involved in the inhibition of ocular growth, we used chick microarrays to analyze the changes in retinal mRNA expression after myopic defocus was imposed by positive lens-wear.

Publication Title

Microarray analysis of retinal gene expression in chicks during imposed myopic defocus.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE10949
Kidney-specific Dysfunction of the Organic Anion Transporter MRP2 (ABCC2): Functional Consequences for Renal Grafts
  • organism-icon Rattus norvegicus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Transplanting renal allografts represents the major curative treatment of chronic renal failure. Despite recent advances in immunosuppressive therapy, long-term survival of allografts remains a major clinical problem. Kidney function depends in part on transport proteins such as MRP2 (ABCC2) which facilitates renal secretion of amphiphilic exogenous and endogenous compounds. Inherited variants of genes not related to the immune system have been shown to modify the outcome after renal transplantation. We investigated whether ABCC2 gene variants in the donor kidney affect renal graft function.

Publication Title

Multidrug resistance-related protein 2 genotype of the donor affects kidney graft function.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE3327
Adult mouse gene expression
  • organism-icon Mus musculus
  • sample-icon 87 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Adult mouse gene expression patterns in common strains

Publication Title

Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact