An immortalized multipotent otic progenitor (iMOP) cell was generated by transient expression of c-Myc in Sox2-expressing otic progenitor cells. The procedure activated endogenous c-Myc expression in the cells and amplified existing Sox2-dependent transcripts to promote self-renewal. Downregulation of c-Myc expression following growth factor withdrawal resulted in a molecular switch from self-renewal to otic differentiation. Overall design: Progenitor cells from embryonic inner ear that form otospheres were infected with a c-Myc retrovirus to promote self-renewal
SHIELD: an integrative gene expression database for inner ear research.
No sample metadata fields
View SamplesGut microbes elicit specific changes in gene expression in the colon of mice. We colonized germ-free mice with microbial communities from the guts of humans, zebrafish and termites, human skin and tongue, soil and estuarine microbial mats.
Bacteria from diverse habitats colonize and compete in the mouse gut.
Sex, Specimen part
View SamplesHair cells of the inner ear are essential for hearing and balance. As a consequence, pathogenic variants in genes specifically expressed in hair cells often cause hereditary deafness. Hair cells are few in number and not easily isolated from the adjacent supporting cells, so the biochemistry and molecular biology of hair cells can be difficult to study. To study gene expression in hair cells, we developed a protocol for hair cell isolation by FACS sorting. With nearly pure hair cells and surrounding cells, from cochlea and utricle and from embryonic day 16 to postnatal day 7, we performed a comprehensive cell-type-specific RNA-Seq study of gene expression during mouse inner ear development. Expression profiling revealed new hair-cell genes with distinct expression patterns: some are specific for vestibular hair cells, others for cochlear hair cells, and some are expressed just before or after maturation of mechanosensitivity. We found that many of the known hereditary deafness genes are much more highly expressed in hair cells than surrounding cells, suggesting that genes preferentially expressed in hair cells are good candidates for unknown deafness genes. Overall design: 3' tags of mRNA profiles of hair cells and surrounding cells from E16, P0, P4, and P7 cochlear and utricular sensory epithelia were generated by deep sequencing, using Illumina GAIIx
XIRP2, an actin-binding protein essential for inner ear hair-cell stereocilia.
No sample metadata fields
View SamplesPurpose: This study aimed to identify differentially expressed genes and transcripts in zebrafish embryos and larvae following benzo[a]pyrene (BaP) exposure. Methods: Adult zebrafish (2 males × 4 females, N=6 replicate tanks for each treatment) were acclimated for 7 days in an 818 Low Temp Illuminated Incubator (Precision Scientific, Chennai, India) at 28.5°C. Next, adult fish were waterborne exposed to control or 50 µg/L (ppb) BaP for 7 days; ethanol was used as vehicle solvent, and final ethanol concentration was 0.1 mL/L (100 ppm) in all treatment groups. This dose of ethanol is not teratogenic to zebrafish. Water was changed and/or re-dosed daily. From day 7 to 11 of the parental exposure, eggs were collected, counted, and raised in normal conditions (control) or continuously exposed to 50 µg/L BaP until 3.3 and 96 hours post fertilization (hpf). At 3.3 or 96 hpf, embryos (200/pool) or larvae (10/pool) were collected and pooled. Total RNA was isolated for transcriptomic RNA sequencing with Illumina HiSeq2000 (2X100bp). RNA-seq reads were uploaded to the galaxy platform https://main.g2.bx.psu.edu/. RNA-seq reads were trimmed, filtered, and aligned to the zebrafish genome (Danio_rerio.Zv9.68) with the Tophat for Illumina tool. Counting and annotation of RNA-seq reads were performed with Partek Genomics Suite version 6.11. Refseq Transcripts (2013-04-10) and Ensembl Transcripts release 70 databases were used for gene and transcript annotation. Differential expression of gene and transcript reads between treatments was analyzed with R package EdgeR. Genes/transcripts with false discovery rate (FDR) less than 0.05 and absolute fold change greater than 1.5 were considered as significant. Differentially expressed genes were defined as genes with altered expression at either gene or transcript level. Results: Differential expression analysis with EdgeR revealed that gene expression was vastly different between 3.3 hpf zebrafish embryos and 96 hpf larvae. Using Refseq annotation, we found that 10644 out of 13950 transcribed zebrafish genes were differentially expressed between the two developmental time-points, with 5961 up-regulated genes and 4683 down-regulated genes in 96 hpf larvae compared with 3.3 hpf embryos. Similarly, using Ensembl annotation, 16529 out of 19886 transcribed zebrafish genes were differentially expressed, with 9318 up-regulated genes and 7211 down-regulated genes in 96 hpf larvae compared with 3.3 hpf embryos. In 3.3 hpf embryos, four genes and seven transcripts were differentially expressed after BaP exposure. In 96 hpf larvae, 447 and 484 zebrafish genes were significantly up- and down-regulated, respectively, by BaP exposure. Conclusions: Parental and developmental BaP exposure caused gene expression changes in zebrafish embryos and larvae. Overall design: Illumina HiSeq2000 deep sequencing was used to generate transcriptomic profiles for BaP-exposed 3.3 hpf zebrafish embryos (n=3 for control, n=3 for BaP) and 96 hpf larvae (n=2 for control, n=2 for BaP).
Transcriptomic Changes in Zebrafish Embryos and Larvae Following Benzo[a]pyrene Exposure.
No sample metadata fields
View SamplesComparison between APPPS1-FVB and APPPS1-FVBxABCC1ko mice
Cerebral amyloid-β proteostasis is regulated by the membrane transport protein ABCC1 in mice.
Specimen part
View SamplesObjective:
Gene expression analysis in absence epilepsy using a monozygotic twin design.
Sex
View SamplesmRNA sequencing was used to identify genome wide transcriptional changes occuring in fly heads in response to spermidine feeding. This study shed light on the molecular mechanisms through wich spermidine can protect against age-dependent memory impairment. Overall design: mRNA profiles from 3 and 10 day old Drosophila melanogaster heads were generated in duplicate by deep sequencing using Illumina GAIIx. mRNA profiles from flies that were fed food with 5mM spermidine were compared to profiles from flies that had no spermidine in thier food.
Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner.
Age, Specimen part, Subject
View SamplesPurpose: This study is designed to identify genes and processes that are differentially regulated in corn when it is grown with or without weeds through the entire critical weed free period (to V8) or when weeds were removed early in the critical weed free period (at V4) and the plants were allowed to recover until V8. Methods: Corn was grown as described above in field plots near Brookings SD in 2007 and 2008 and RNA was extracted from the top-most leaf tips from four plants per treatment plot. Unidirectional cDNA illumina sequencing libraries were constructed for each sample (pooled leaf tips from the given plot), and were sequenced (some samples were paired end sequenced and some were single end sequenced - all 100 bases for PE and SE reads), quality trimmed, and analyzed using the Tuxedo suite of programs for SE reads of the forward read libraries for each sample. Results: We identified a small number of genes that were differentially expressed in both years. More importantly, gene set enrichment analysis of the data determined that weeds, when present through the critical weed free period impacted phytochrome signaling, defense responses, photosynthetic processes, oxidative stress responses, and various hormone signaling processes. When weeds were removed at V4 and the plants allowed to recover until V8, the weeds still imprinted impacts on phytochrome signaling, oxidative stress, and defense responses. Thus, it appears that weeds presence through the early portion of the critical weed free period, even after removal, induced processes that reduce corn growth and yield that lasted at least through V8. Conclusions: This study represents the first investigation of the impact of the lasting effects of weeds during the early critical weed free period on the transcriptome of corn, and provides additional data on the impact of weeds through the critical weed free period that augments and confirms much of what was observed in similar microarray studies. Overall design: Experimental Design: Samples all collected at the same developmental stage (V8) from three treatments (control, weedy, and weeds removed followed by recovery), in each of two years (2007 and 2008), with two to three biological replicates of each treatment in each year.
Weed presence altered biotic stress and light signaling in maize even when weeds were removed early in the critical weed-free period.
Specimen part, Cell line, Subject
View SamplesExpression profiles of anti-TNF responders were compared to profiles of anti-TNF non-responders in order to identify an expression signature for anti-TNF response
Validation study of existing gene expression signatures for anti-TNF treatment in patients with rheumatoid arthritis.
Specimen part, Disease, Disease stage, Treatment
View SamplesMaintenance and maturation of primordial germ cells is controlled by complex genetic and epigenetic cascades, and disturbances in this network lead to either infertility or malignant aberration. Transcription factor Tcfap2c / TFAP2C has been described to be essential for primordial germ cell maintenance and to be upregulated in several human germ cell cancers. Using global gene expression profiling, we identified genes deregulated upon loss of Tcfap2c in primordial germ cell-like cells. We show that loss of Tcfap2c affects many aspects of the genetic network regulating germ cell biology, such as downregulation maturation markers and induction of markers indicative of somatic differentiation, cell cycle, epigenetic remodeling, and pluripotency associated genes. Chromatin-immunoprecipitation analyses demonstrated binding of Tcfap2c to regulatory regions of deregulated genes (Sfrp1, Dmrt1, Nanos3, c-Kit, Cdk6, Cdkn1a, Fgf4, Klf4, Dnmt3b and Dnmt3l) suggesting that these genes are direct transcriptional targets of Tcfap2c in primordial germ cells. Since Tcfap2c deficient primordial germ cell like cells display cancer related deregulations in epigenetic remodeling, cell cycle and pluripotency control, the Tcfap2c-knockout allele was bred onto 129S2/Sv genetic background. There, mice heterozygous for Tcfap2c develop germ cell cancer with high incidence. Precursor lesions can be observed as early as E16.5 in developing testes displaying persisting expression of pluripotency markers. We further demonstrate, that mice with a heterozygous deletion of the Tcfap2c target gene Nanos3 are also prone to develop teratoma. These data highlight Tcfap2c as a critical and dose-sensitive regulator of germ cell fate.
Transcription factor TFAP2C regulates major programs required for murine fetal germ cell maintenance and haploinsufficiency predisposes to teratomas in male mice.
Specimen part
View Samples