Malignant Hodgkin's lymphoma (HL) cells are characterized by constitutive activation of the canonical as well as the non-canonical NF-B signaling cascades. We depleted subunit combinations corresponding to either canonical (p50/RelA) or non-canonical (p52/RelB) dimers in the HL cell line L-1236 and performed Affymetrix microarray analysis. Knockdown of p52/RelB affected the expression of a significantly higher number of genes than the knockdown of p50/RelA. The two sets of target genes presented a partial overlap, however they also revealed specific genes that are involved in distinct aspects of tumor biology.
A roadmap of constitutive NF-κB activity in Hodgkin lymphoma: Dominant roles of p50 and p52 revealed by genome-wide analyses.
Cell line, Treatment
View SamplesMalignant cells of Hodgkin's lymphoma (HL) cells are characterized by constitutive activation of the canonical as well as the non-canonical NF-B signaling cascades. Knockdown of a subunit combination corresponding to the non-canonical NF-B dimer (p52/RelB) in the HL cell line L-1236 caused up-regulation of a set of genes that are associated with hematopoietic and lymphoid organ development. As p52 can form homodimeric complexes, which can repress transcription either alone or in association with transcriptional repressors such as HDAC1, we knocked down p52 alone to analyze its role in gene repression in HL cells. We found that the single knockdown of p52 is indeed sufficient to up-regulate an interesting set of genes that may play a role in B-cell and/or HL development.
A roadmap of constitutive NF-κB activity in Hodgkin lymphoma: Dominant roles of p50 and p52 revealed by genome-wide analyses.
Cell line, Treatment
View SamplesTreatment induced senescence (TIS) is a terminal cell cycle arrest program, increasingly recognized as a tumor suppressor mechanism complementing apoptosis in response to standard chemotherapy regimens. In particular cells with blocked apoptotic pathways rely on senescence as the only remaining failsafe mechanism to keep the neoplastic growth in check. However, little is known about biological properties, long-term fate of senescent tumor cells and their impact on the microenvironment.
Opposing roles of NF-κB in anti-cancer treatment outcome unveiled by cross-species investigations.
No sample metadata fields
View SamplesThe RNA-binding protein RC3H1 (also known as ROQUIN) promotes TNFalpha mRNA decay via a 3''UTR constitutive decay element (CDE). Here, we applied PAR-CLIP to human RC3H1 to identify about 3800 mRNA targets with more than 16000 binding sites. A large number of sites are distinct from the consensus CDE and revealed a structure-sequence motif with U-rich sequences embedded in hairpins. RC3H1 binds preferentially short-lived and DNA damage induced mRNAs, indicating a role of this RNA-binding protein in the posttranscriptional regulation of the DNA damage response. Intriguingly, RC3H1 affects expression of NF-kB pathway regulators such as IkBalpha and A20. RC3H1 uses roquin and Zn-finger domains to contact a binding site in the A20 3''UTR, demonstrating a not yet recognized mode of RC3H1 binding. Knockdown of RC3H1 resulted in increased A20 protein expression, thereby interfering with IkB kinase and NF-kB activities, demonstrating that RC3H1 can modulate the activity of the IKK/NF-kB pathway. Overall design: We measured global mRNA decay rates in mock and RC3H1/RC3H2-depleted HEK293 cells. Transcription was blocked by Actinomycin D zero, one or two hours before harvesting. Total RNA was isolated in two biological replicates and subjected to polyA selection followed by high-throughput sequencing.
RC3H1 post-transcriptionally regulates A20 mRNA and modulates the activity of the IKK/NF-κB pathway.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
IκB-ζ controls the constitutive NF-κB target gene network and survival of ABC DLBCL.
Cell line, Treatment
View SamplesConstitutive activation of the nuclear factor-kappa B (NF-kB) pathway is a hallmark of the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL). Recurrent mutations of NF-kB regulators that cause constitutive activity of this oncogenic pathway have been identified. However, it remains unclear how specific target genes are regulated. We identified the IkB-like protein NFKBIZ that binds NF-kB subunits and enhances transactivation of some NF-kB target genes while repressing others, to be upregulated in ACB compared to GCB DLBCL primary patient samples (p=5.1 x 10^-37). Knockdown of NFKBIZ by RNA interference was toxic to ABC but not GCB DLBCL cell lines. Gene expression profiling following NFKBIZ knockdown significantly downregulated a large number of NF-kB target genes, suggesting a central role in regulating NF-kB signaling. To further investigate the molecular mechanisms of how NFKBIZ mediates NF-kB signaling in ABC DLBCL, we performed immunoprecipitations and detected an interaction of NFKBIZ with both p50 and p52 NF-kB subunits, indicating that both the canonical and non-canonical NF-kB pathways are regulated by NFKBIZ. Collectively, our data imply that NFKBIZ is required for NF-kB signaling in ABC DLBCL and thus might represent a promising molecular target for future therapies.
IκB-ζ controls the constitutive NF-κB target gene network and survival of ABC DLBCL.
Cell line
View SamplesConstitutive activation of the nuclear factor-kappa B (NF-kB) pathway is a hallmark of the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL). Recurrent mutations of NF-kB regulators that cause constitutive activity of this oncogenic pathway have been identified. However, it remains unclear how specific target genes are regulated. We identified the IkB-like protein NFKBIZ that binds NF-kB subunits and enhances transactivation of some NF-kB target genes while repressing others, to be upregulated in ACB compared to GCB DLBCL primary patient samples (p=5.1 x 10^-37). Knockdown of NFKBIZ by RNA interference was toxic to ABC but not GCB DLBCL cell lines. Gene expression profiling following NFKBIZ knockdown significantly downregulated a large number of NF-kB target genes, suggesting a central role in regulating NF-kB signaling. To further investigate the molecular mechanisms of how NFKBIZ mediates NF-kB signaling in ABC DLBCL, we performed immunoprecipitations and detected an interaction of NFKBIZ with both p50 and p52 NF-kB subunits, indicating that both the canonical and non-canonical NF-kB pathways are regulated by NFKBIZ. Collectively, our data imply that NFKBIZ is required for NF-kB signaling in ABC DLBCL and thus might represent a promising molecular target for future therapies.
IκB-ζ controls the constitutive NF-κB target gene network and survival of ABC DLBCL.
Cell line, Treatment
View SamplesGenome-wide gene expression analysis of Reh cells following transfection with constitutively active IRF5-4D, constitutively active IKK(EE), or both in combination.
Mapping of transcription factor motifs in active chromatin identifies IRF5 as key regulator in classical Hodgkin lymphoma.
Cell line
View SamplesGenome-wide gene expression analysis of murine splenic B-cells following retroviral transduction with a constitutively active IRF5 (IRF5-4D)
Mapping of transcription factor motifs in active chromatin identifies IRF5 as key regulator in classical Hodgkin lymphoma.
Specimen part
View SamplesExtracorporeal shockwave treatment was shown to improve orthopaedic diseases, wound healing and to stimulate lymphangiogenesis in vivo. The aim of this study was to investigate in vitro shockwave treatment (IVSWT) effects on lymphatic endothelial cell (LEC) behavior and lymphangiogenesis. We analyzed migration, proliferation, vascular tube forming capability and marker expression changes of LECs after IVSWT compared with HUVECs. Finally, transcriptome- and miRNA analyses were conducted to gain deeper insight into the IVSWT-induced molecular mechanisms in LECs. The results indicate that IVSWT-mediated proliferation changes of LECs are highly energy flux density-dependent and LEC 2D as well as 3D migration was enhanced through IVSWT. IVSWT suppressed HUVEC 3D migration but enhanced vasculogenesis. Furthermore, we identified podoplaninhigh and podoplaninlow cell subpopulations, whose ratios changed upon IVSWT treatment. Transcriptome- and miRNA analyses on these populations showed differences in genes specific for signaling and vascular tissue. Our findings help to understand the cellular and molecular mechanisms underlying shockwave-induced lymphangiogenesis in vivo.
Molecular and cellular effects of in vitro shockwave treatment on lymphatic endothelial cells.
Specimen part
View Samples