The expression profiles of 64 neuroblastic tumors (mainly neuroblastoma) were determined on Affymetrix chips HG U133 Plus 2.0.
Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma.
No sample metadata fields
View SamplesA ""Cartes d'Identite des Tumeurs"" (CIT) project from the french Ligue Nationale Contre le Cancer (<a href="http://cit.ligue-cancer.net" target="_blank">http://cit.ligue-cancer.net</a>). 73 samples (60 tumoral, 6 normal kidneys (NK), 3 fetal kidneys (FK) and 4 cell lines (L)), hybridized on Affymetrix HG-U133A GeneChips.Tumor classification based on a characterization of WT1 and Betacatenin. Identification of major differences between two categories of Wilms' Tumors defined according to WT1 and CTNNB1 genomic and expression features. First large scale study based on post-chemotherapy resected tumors, according to the SIOP protocoles.
WNT/beta-catenin pathway activation in Wilms tumors: a unifying mechanism with multiple entries?
Sex, Age, Specimen part, Disease, Disease stage, Subject
View SamplesNeuroblastoma is an embryonal neoplasm that remains of dramatic prognosis in its aggressive forms. Activating mutations of the ALK tyrosine kinase receptor have been identified in sporadic and familial cases of this cancer. We generated knock-in mice carrying the two most frequent Alk mutations observed in neuroblastoma patients. We used microarrays to detail the global programme of gene expression underlying the impact of ALK mutations on neuroblastoma formation in a MYCN amplified background.
Activated Alk triggers prolonged neurogenesis and Ret upregulation providing a therapeutic target in ALK-mutated neuroblastoma.
Specimen part
View SamplesWNT-induced secreted protein 1 (WISP1/CCN4), a member of the CCN protein family, acts as a downstream factor of the canonical WNT-signaling pathway. A dysregulated expression of WISP1 often reflects its oncogenic potential by inhibition of apoptosis, a necessary form of cell death that protect cell populations for transformation into malignant phenotypes. WISP1-signaling is also known to affect proliferation and differentiation of human mesenchymal stem cells (hMSCs), which are fundamental for the constitution and maintenance of the musculoskeletal system. Our study emphasizes the importance of WISP1-signaling for cell survival of primary human cells. Therefore, we established a successful down-regulation of endogenous WISP1 transcripts through gene silencing in hMSCs. We were able to demonstrate the consequence of cell death immediately after WISP1 down-regulation took place. Bioinformatical analyses of subsequent performed microarrays from WISP1 down-regulated vs. control samples confirmed this observation. We uncovered several clusters of differential expressed genes important for cellular apoptosis induction and immuno-regulatory processes, thereby indicating TRAIL-induced and p53-mediated apoptosis as well as IFNbeta-signaling. Since all of them act as potent inhibitors for malignant cell growth, in vitro knowledge about the connection with WISP1-signaling could help to find new therapeutic approaches concerning cancerogenesis and tumor growth in musculoskeletal tissues.
WISP 1 is an important survival factor in human mesenchymal stromal cells.
Specimen part, Treatment
View SamplesUpon induction of DNA damage Arabidopsis thaliana plants initiate a transcriptional response program governed by signalling cascades which are activated by the ATM and ATR kinases
GMI1, a structural-maintenance-of-chromosomes-hinge domain-containing protein, is involved in somatic homologous recombination in Arabidopsis.
Specimen part
View SamplesInvestigation whether hypoxic stabilization of HIF-1alpha quantitatively or qualitatively modifies the gene expression pattern induced by poly I:C, a TLR ligand that does not induce normoxic HIF-1alpha stabilization on its own (non-HIF-1alpha-stabilizing TLR ligand).
Toll-like receptor activation and hypoxia use distinct signaling pathways to stabilize hypoxia-inducible factor 1α (HIF1A) and result in differential HIF1A-dependent gene expression.
No sample metadata fields
View SamplesIn this study we analyzed the myeloma cell contact-mediated changes on the transcriptome of skeletal precursor cells. Therefore, human mesenchymal stem cells (MSC) and osteogenic precursor cells (OPC) were co-cultured with the representative myeloma cell line INA-6 for 24 h. Afterwards, MSC and OPC were separated from INA-6 cells by fluorescence activated cell sorting. Total RNA of MSC and OPC fractions was used for whole genome array analysis.
Contact of myeloma cells induces a characteristic transcriptome signature in skeletal precursor cells -Implications for myeloma bone disease.
Sex, Age, Specimen part, Disease stage
View SamplesRecently, the p53-miR-34a network was identified to play an important role in tumorigenesis. As in acute myeloid leukemia with complex karyotype (CK-AML) TP53 alterations are the most common known molecular lesion, we further analyzed the p53-miR-34a axis in CK-AML with known TP53 status. Clinically, low miR-34a expression and TP53 alterations predicted for chemotherapy resistance and inferior outcome. Notably, in TP53unaltered CK-AML high miR-34a expression predicted for inferior overall survival (OS), whereas in TP53biallelic altered CK-AML high miR-34a expression pointed to better OS.
Altered miRNA and gene expression in acute myeloid leukemia with complex karyotype identify networks of prognostic relevance.
Disease
View SamplesThese experiments were designed to detect transcript (mRNA) changes in whole circulating blood in animals exposed to D-amphetamine under neurotoxic and non-neurotoxic conditions, or subjected to elevated environmental temperatures that produced a hyperthermia very similar to heat stroke. The study objectives were: 1) to detect transcript changes in blood due to life-threatening hyperthermia produced by elevated environmental temperatures (39°C, produces no or minimal neurotoxicity); 2) detect transcripts that could serve as biomarkers specific for neurotoxic amphetamine exposures and not seen with environmentally-induced hyperthermia; and 3) determine the transcript changes related to the immune system in circulating blood produced by either non-neurotoxic or neurotoxic amphetamine exposures. Amphetamine effects on gene expression are dependent on body temperature and indicate that many significant changes in genes related to the immune system occur, some likely in response to damage, even when animals remain normothermic during amphetamine exposure. Also, hyperthermia alone produces many changes in immune related genes in blood Overall design: Five groups of animals were necessary to meet the study objectives. All groups were given 4 injections of either normal saline or amphetamine, and the injections were sequentially given with 2 h between each injection. Dosing started at 7:30 to 8:30 a.m. The groups are: 1) normothermic controls given normal saline in a 22.5°C environment; 2) controls given normal saline in a 16°C environment (also remained normothermic); 3) environmentally-induced hyperthermia given saline in a 39°C environment; 4) non-neurotoxic amphetamine given in a 16°C environment and 5) neurotoxic amphetamine group given amphetamine in a 22.5°C environment. Note the the saline controls (normothermic data) is contained in a separate but linked GEO file GSE62368
Evaluating the Stability of RNA-Seq Transcriptome Profiles and Drug-Induced Immune-Related Expression Changes in Whole Blood.
No sample metadata fields
View SamplesTo characterize gene response in RPE65-/- mouse model of Lebers congenital amaurosis during progression of the disease, we analyzed differential gene expression in retinae early in the development of the disease, namely before and at the onset of photoreceptor cell death in knock-out mice of 2, 4 and 6 months of age.
Biological characterization of gene response in Rpe65-/- mouse model of Leber's congenital amaurosis during progression of the disease.
Age, Specimen part
View Samples