refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3078 results
Sort by

Filters

Technology

Platform

accession-icon GSE68638
Engineering of a promoterless anti-viral RNAi hairpin into an endogenous miRNA locus
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

TALEN/CRISPR-mediated engineering of a promoterless anti-viral RNAi hairpin into an endogenous miRNA locus.

Sample Metadata Fields

Sex, Cell line

View Samples
accession-icon GSE68637
Engineering of a promoterless anti-viral RNAi hairpin into an endogenous miRNA locus [mRNA]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Short hairpin RNA (shRNA) expression strategies that allow safe and persistent target mRNA knockdown are key to the success of many in vitro or in vivo RNAi applications. Here, we propose a novel solution which is expression of a promoterless miRNA-adapted shRNA (shmiRNA) from an engineered genomic miRNA locus. For proof-of-concept, we genetically vaccinated liver cells against a human pathogen, by using TALEns or CRISPR to integrate an anti-hepatitis C virus (HCV) shmiRNA into the liver-specific miR-122/hcr gene. Reporter assays and qRT-PCR confirmed anti-HCV shmiRNA expression as well as miR-122 integrity and functionality. Specificity and safety of shmiRNA integration were validated via PCR, cDNA and miRNA profiling, and whole genome sequencing. A subgenomic HCV replicon and a full-length reporter virus, but not a Dengue virus control, were significantly impaired in the modified cells. Our original combination of DNA engineering and RNA expression technologies should benefit numerous applications, from basic miRNA research, to human cell and gene therapy

Publication Title

TALEN/CRISPR-mediated engineering of a promoterless anti-viral RNAi hairpin into an endogenous miRNA locus.

Sample Metadata Fields

Sex, Cell line

View Samples
accession-icon GSE37603
Identification of WISP1 as an important survival factor in human mesenchymal stem cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

WNT-induced secreted protein 1 (WISP1/CCN4), a member of the CCN protein family, acts as a downstream factor of the canonical WNT-signaling pathway. A dysregulated expression of WISP1 often reflects its oncogenic potential by inhibition of apoptosis, a necessary form of cell death that protect cell populations for transformation into malignant phenotypes. WISP1-signaling is also known to affect proliferation and differentiation of human mesenchymal stem cells (hMSCs), which are fundamental for the constitution and maintenance of the musculoskeletal system. Our study emphasizes the importance of WISP1-signaling for cell survival of primary human cells. Therefore, we established a successful down-regulation of endogenous WISP1 transcripts through gene silencing in hMSCs. We were able to demonstrate the consequence of cell death immediately after WISP1 down-regulation took place. Bioinformatical analyses of subsequent performed microarrays from WISP1 down-regulated vs. control samples confirmed this observation. We uncovered several clusters of differential expressed genes important for cellular apoptosis induction and immuno-regulatory processes, thereby indicating TRAIL-induced and p53-mediated apoptosis as well as IFNbeta-signaling. Since all of them act as potent inhibitors for malignant cell growth, in vitro knowledge about the connection with WISP1-signaling could help to find new therapeutic approaches concerning cancerogenesis and tumor growth in musculoskeletal tissues.

Publication Title

WISP 1 is an important survival factor in human mesenchymal stromal cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE87073
Contact of myeloma cells induces a characteristic transcriptome signature in skeletal precursor cells - Implications for myeloma bone disease
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study we analyzed the myeloma cell contact-mediated changes on the transcriptome of skeletal precursor cells. Therefore, human mesenchymal stem cells (MSC) and osteogenic precursor cells (OPC) were co-cultured with the representative myeloma cell line INA-6 for 24 h. Afterwards, MSC and OPC were separated from INA-6 cells by fluorescence activated cell sorting. Total RNA of MSC and OPC fractions was used for whole genome array analysis.

Publication Title

Contact of myeloma cells induces a characteristic transcriptome signature in skeletal precursor cells -Implications for myeloma bone disease.

Sample Metadata Fields

Sex, Age, Specimen part, Disease stage

View Samples
accession-icon GSE39730
Altered miRNA and gene expression in acute myeloid leukemia with complex karyotype identify networks of prognostic relevance
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Recently, the p53-miR-34a network was identified to play an important role in tumorigenesis. As in acute myeloid leukemia with complex karyotype (CK-AML) TP53 alterations are the most common known molecular lesion, we further analyzed the p53-miR-34a axis in CK-AML with known TP53 status. Clinically, low miR-34a expression and TP53 alterations predicted for chemotherapy resistance and inferior outcome. Notably, in TP53unaltered CK-AML high miR-34a expression predicted for inferior overall survival (OS), whereas in TP53biallelic altered CK-AML high miR-34a expression pointed to better OS.

Publication Title

Altered miRNA and gene expression in acute myeloid leukemia with complex karyotype identify networks of prognostic relevance.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE3249
Analysis of RPE65 loss of function in mouse retina
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To characterize gene response in RPE65-/- mouse model of Lebers congenital amaurosis during progression of the disease, we analyzed differential gene expression in retinae early in the development of the disease, namely before and at the onset of photoreceptor cell death in knock-out mice of 2, 4 and 6 months of age.

Publication Title

Biological characterization of gene response in Rpe65-/- mouse model of Leber's congenital amaurosis during progression of the disease.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP002255
RNA-Seq on libraries made from serial dilutions of Drosophila melanogaster S2 cell mRNA and ERCC external RNA controls
  • organism-icon Drosophila melanogaster
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

RNA-Seq on libraries made from serial dilutions of mRNA from Drosophila melanogaster S2 cell and the External RNA Controls Consortium (ERCC) external RNA controls. We evaluated performance of RNA-Seq by serially diluting a complex pool of known synthetic PolyA+ mRNAs from the External RNA Controls Consortium (ERCC) and PolyA+ mRNA from Drosophila S2 cells. ERCC mRNAs were obtained under Phase V testing from the National Institutes of Standards and Technology (NIST). The ERCC pool contained 96 species of mRNA of various lengths and GC content covering a 2^20 concentration range. Libraries were constructed with 100ng to 10pg of input mRNA. Our data shows an outstanding linear fit between RNA-Seq read density and known input amounts. Overall design: We performed RNA-Seq from libraries made with 0.01ng to 100ng mRNA (mixture of mRNA from Drosophila melanogaster S2 cells and ERCC RNA controls). One RNA-Seq library was prepared with 100ng mRNA and six libraries were made with serial dilutions of mRNA using a modified protocol (see Sample ''extraction protocol''). One lane was sequenced for each library and all seven libraries were run on the same flow cell.

Publication Title

Synthetic spike-in standards for RNA-seq experiments.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE43258
PRAME induced inhibition of retinoic acid receptor signaling-mediated differentiation - a possible target for ATRA response in AML without t(15;17)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Purpose: In acute myeloid leukemia (AML) without retinoic acid receptor (RAR) rearrangement the effect of all-trans retinoic acid (ATRA) is still poorly understood despite an association of NPM1 mutation and ATRA response. Recently, PRAME (preferentially expressed antigen in melanoma) has been shown to be a dominant repressor of RAR-signaling. Experimental design: Thus, we further investigated ATRA response mechanisms, especially the impact of PRAME expression on ATRA-responsiveness by profiling gene expression in K562 cell lines. Results: Our data revealed a PRAME-expression associated gene pattern to be significantly enriched for genes involved in the retinoic acid metabolic process. In leukemia cell line models we could demonstrate that retinoic acid-regulated cell proliferation and differentiation are impacted by PRAME expression. Conclusions: PRAME seems to impair differentiation and to increase proliferation likely via blocking RAR-signaling, which might be reversed by ATRA.

Publication Title

PRAME-induced inhibition of retinoic acid receptor signaling-mediated differentiation--a possible target for ATRA response in AML without t(15;17).

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE34729
Gene expression changes induced by overexpression of EVI1 in Lin- hematopoietic cells [Lin]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The transcription factor Evi1 is essential for the formation and maintenance of hematopoietic stem cells, and induces clonal dominance with malignant progression upon constitutive activation by chromosomal rearrangements or transgene integration events. To understand the immediate and adaptive response of primary murine hematopoietic cells to the transcriptional upregulation of Evi1, we developed an inducible lentiviral vector system with a robust expression switch. We found that Evi1 delays differentiation and promotes survival in myeloid culture conditions, orchestrating a battery of genes involved in stemness (Aldh1a1, Ly6a [Sca1], Abca1, Epcam, among others). Importantly, Evi1 suppresses Cyclins and Cyclin-dependent kinases (Cdk), while it upregulates Cdk inhibitors, inducing quiescence in various proliferation-inducing cytokine conditions and operating in a strictly dose-dependent manner. Hematopoietic cells with persisting Evi1-induction tend to adopt a relatively low expression level. We thus classify Evi1 as a dormancy-inducing oncogene, likely requiring epigenetic and genetic compensation for cell expansion and malignant progression.

Publication Title

Activation of Evi1 inhibits cell cycle progression and differentiation of hematopoietic progenitor cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39103
Gene expression changes induced by overexpression of EVI1 in Lin- hematopoietic cells [EVI1_ST]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The transcription factor Evi1 is essential for the formation and maintenance of hematopoietic stem cells, and induces clonal dominance with malignant progression upon constitutive activation by chromosomal rearrangements or transgene integration events. To understand the immediate and adaptive response of primary murine hematopoietic cells to the transcriptional upregulation of Evi1, we developed an inducible lentiviral vector system with a robust expression switch. We found that Evi1 delays differentiation and promotes survival in myeloid culture conditions, orchestrating a battery of genes involved in stemness (Aldh1a1, Ly6a [Sca1], Abca1, Epcam, among others). Importantly, Evi1 suppresses Cyclins and Cyclin-dependent kinases (Cdk), while it upregulates Cdk inhibitors, inducing quiescence in various proliferation-inducing cytokine conditions and operating in a strictly dose-dependent manner. Hematopoietic cells with persisting Evi1-induction tend to adopt a relatively low expression level. We thus classify Evi1 as a dormancy-inducing oncogene, likely requiring epigenetic and genetic compensation for cell expansion and malignant progression.

Publication Title

Activation of Evi1 inhibits cell cycle progression and differentiation of hematopoietic progenitor cells.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact