refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3078 results
Sort by

Filters

Technology

Platform

accession-icon GSE1674
BPH and BPL mouse strain adrenal glands
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

We performed Affymetrix MG-U74Av2 GeneChip experiements on mRNA from the adrenal glands of the BPH hypertensive and BPL hypotensive mouse strains. All mice were aged-matched at 5 weeks. We obtained the mice from Jackson Laboratories, Bar Harbor, ME.

Publication Title

Neuroendocrine transcriptome in genetic hypertension: multiple changes in diverse adrenal physiological systems.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE1675
SHR and WKY rat adrenal glands
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome U34 Array (rgu34a)

Description

We measured gene expression in the adrenal glands of the Spontaneously Hypertensive Rat (SHR) and Wistar-Kyoto rat (WKY) using Affymetrix RG-U34A GeneChips. All rats were aged-matched at 4-weeks. The rats were obtained from the colonies at the Univeristy of California San Diego, La Jolla, CA.

Publication Title

Common genetic mechanisms of blood pressure elevation in two independent rodent models of human essential hypertension.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18332
Gene expression from chromogranin A knockout mice vs. wild-type mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2), Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Global metabolic consequences of the chromogranin A-null model of hypertension: transcriptomic detection, pathway identification, and experimental verification.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE18305
Liver gene expression from chromogranin A knockout mice (Mahapatra et al. 2005) vs. wild-type mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The objective of the experiment is to determine the genes differentially expressed in the liver of the chromogranin A knockout mouse (Mahapatra et al., 2005).

Publication Title

Global metabolic consequences of the chromogranin A-null model of hypertension: transcriptomic detection, pathway identification, and experimental verification.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE18304
Adrenal gland gene expression from chromogranin A knockout mice (Mahapatra et al. 2005) vs. wild-type mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

The objective of the experiment is to determine the genes differentially expressed in the adrenal gland of the chromogranin A knockout mouse (Mahapatra et al., 2005).

Publication Title

Global metabolic consequences of the chromogranin A-null model of hypertension: transcriptomic detection, pathway identification, and experimental verification.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE17939
MEK5D-transfected HUVEC
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We expressed a constitutively active mutant of MEK5 (MEK5D) in human primary endothelial cells (EC) to study the transcriptional and functional responses to Erk5 activation under static conditions.

Publication Title

Erk5 activation elicits a vasoprotective endothelial phenotype via induction of Kruppel-like factor 4 (KLF4).

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE26410
Inflammation leads to loss of smooth muscle cells but fails to induce invasiveness in a prostate tumor model
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Inflammation has a causal role in many cancers. In prostate cancers, epidemiological data suggest a link between prostatitis and subsequent cancer development, but a proof for this concept in a tumor model has been lacking. A constitutively active version of the IkappaB kinase 2 (IKK2), the molecule activated by a plethora of inflammatory stimuli, was expressed specifically in the prostate epithelium. Signaling of the IKK2/NF-kappaB axis was insufficient for transformation of prostate tissue. However, while PTEN+/- epithelia exhibited intraepithelial neoplasias only recognizable by nuclear alterations, additional IKK2 activation led to an increase in tumor size and formation of cribriform structures and to a fiber increase in the fibroblastic stroma. This phenotype was coupled with inflammation in the prostate gland characterized by infiltration of granulocytes and macrophages. Molecular characterization of the tissues showed a specific loss of smooth muscle markers as well as expression of chemokines attracting immune cells. Isolation of epithelial and stromal cells showed differential chemokine expression by these cells. Correlation studies showed the inflammatory phenotype coupled to loss of smooth muscle in infiltrated glands, but maintenance of the phenotype in glands where inflammation had decreased. Despite the loss of the smooth muscle barrier, tumors were not invasive in a stable genetic background. Data mining revealed that smooth muscle markers are downregulated in human prostate cancers and literature data show that loss of these markers in primary tumors is associated with subsequent metastasis. Our data show that loss of smooth muscle and invasiveness of the tumor are not coupled. Thus, inflammation during early steps of tumorigenesis can lead to increased tumor size and a potential change in the subsequent metastatic potential, but the tumor requires an additional transformation to become a carcinoma.

Publication Title

Persistent inflammation leads to proliferative neoplasia and loss of smooth muscle cells in a prostate tumor model.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE15139
Identification of genes effected by GM-CSF treatment in mature human neutrophils
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

The objective of this study was to compare the transcriptional repertoire of mature human neutrophils before and after GM-CSF treatment by using oligonucleotide microarrays.

Publication Title

RhoH/TTF negatively regulates leukotriene production in neutrophils.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP097735
Neuroblastoma cells undergo transcriptomic alterations during dissemination into the bone marrow and subsequent tumor progression
  • organism-icon Homo sapiens
  • sample-icon 79 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Background: Neuroblastoma is the most common extracranial solid tumor in childhood. The vast majority of stage M patients present with disseminated tumor cells (DTCs) in the bone marrow (BM). Although these cells represent a major obstacle in the treatment of neuroblastoma patients, their transcriptomic profile was not intensively analyzed so far. Results: RNA-Seq of stage M primary tumors, enriched BM-derived DTCs and the corresponding non-tumor mononuclear cells (MNCs) revealed that DTCs largely retained the gene expression signature of tumors. However, we identified 322 genes that were differentially expressed (q < 0.001, |log2FC|>2). Particularly genes encoded by mitochondrial DNA were highly up-regulated in DTCs, whereas e.g. genes involved in angiogenesis were down-regulated. Furthermore, 224 genes were highly expressed in DTCs and only slightly, if at all, in MNCs (q < 8x10-75 log2FC > 6). Interestingly, we found that the gene expression profiles of diagnostic DTCs largely resembled those of relapse DTCs with only 113 differentially expressed genes under relaxed cut-offs (q < 0.01, |log2FC| > 0.5). Notably, relapse DTCs showed a positional enrichment of 31 down-regulated genes encoded by chromosome 19, including five tumor suppressor genes (SIRT6, PUMA, STK11, CADM4 and GLTSCR2). Conclusion: This first RNA-Seq analysis of DTCs from neuroblastoma patients revealed their unique expression profile in comparison to the corresponding MNCs and tumor samples, and, interestingly, also expression differences between diagnostic and relapse DTCs preferentially affecting chromosome 19. As these alterations might be associated with treatment failure and disease relapse, they should be considered for further functional studies. Overall design: Tumor (n=16), bone marrow-derived disseminated tumor cells (n=42) and corresponding bone marrow-derived non-tumor cells (n=28) of stage M neuroblastoma patients were used for RNA-Seq

Publication Title

Neuroblastoma cells undergo transcriptomic alterations upon dissemination into the bone marrow and subsequent tumor progression.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE47189
Transcriptome-based network analysis reveals a spectrum model of human macrophage activation
  • organism-icon Homo sapiens
  • sample-icon 186 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptome-based network analysis reveals a spectrum model of human macrophage activation.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact