We expressed a constitutively active mutant of MEK5 (MEK5D) in human primary endothelial cells (EC) to study the transcriptional and functional responses to Erk5 activation under static conditions.
Erk5 activation elicits a vasoprotective endothelial phenotype via induction of Kruppel-like factor 4 (KLF4).
Cell line
View SamplesTo delineate specific patterns of signaling networks activated by H5N1 we used a comparative systems biology approach analyzing gene expression in endothelial cells infected with three different human and avian influenza strains of high and low pathogenicity.
Essential impact of NF-kappaB signaling on the H5N1 influenza A virus-induced transcriptome.
No sample metadata fields
View SamplesHighly pathogenic avian influenza viruses (HPAIV) induce severe inflammation in poultry and men. There is still an ongoing threat that these viruses may acquire the capability to freely spread as novel pandemic virus strains that may cause major morbidity and mortality. One characteristic of HPAIV infections is the induction of a cytokine burst that strongly contributes to viral pathogenicity. It has been suggested, that this cytokine overexpression is an intrinsic feature of infected cells and involves hyperinduction of p38 mitogen activated protein kinase (MAPK). Here we investigate the role of MAPK p38 signaling in the antiviral response against HPAIV in mice as well as in endothelial cells, the latter a primary source for cytokines during systemic infections.
Inhibition of p38 mitogen-activated protein kinase impairs influenza virus-induced primary and secondary host gene responses and protects mice from lethal H5N1 infection.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Inhibition of pyrimidine synthesis reverses viral virulence factor-mediated block of mRNA nuclear export.
Specimen part, Cell line
View SamplesAnalysis of cellular response to DHODH inhibition at gene expression and nuclear/cytoplasmic distribution level.
Inhibition of pyrimidine synthesis reverses viral virulence factor-mediated block of mRNA nuclear export.
Specimen part
View SamplesAnalysis of cellular response to DHODH inhibition at gene expression and nuclear/cytoplasmic distribution level.
Inhibition of pyrimidine synthesis reverses viral virulence factor-mediated block of mRNA nuclear export.
Specimen part
View SamplesAnalysis of cellular response to DHODH inhibition at gene expression and nuclear/cytoplasmic distribution level.
Inhibition of pyrimidine synthesis reverses viral virulence factor-mediated block of mRNA nuclear export.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Human Dendritic Cell Response Signatures Distinguish 1918, Pandemic, and Seasonal H1N1 Influenza Viruses.
Specimen part, Treatment
View SamplesAn 8 hours timecourse was performed with human DCs infected either with A/California/7/2009 and A/Brevig Mission/1/1918 (pandemic) or A/New Caledonia/20/99 and A/Texas/36/91 seosonal.
Human Dendritic Cell Response Signatures Distinguish 1918, Pandemic, and Seasonal H1N1 Influenza Viruses.
Specimen part, Treatment
View SamplesAn 8 hours timecourse was performed with human DCs infected either with A/California/7/2009 and A/Brevig Mission/1/1918 (pandemic) or A/New Caledonia/20/99 and A/Texas/36/91 seosonal.
Human Dendritic Cell Response Signatures Distinguish 1918, Pandemic, and Seasonal H1N1 Influenza Viruses.
Specimen part, Treatment
View Samples