substantial number of people at risk to develop type 2 diabetes could not improve insulin sensitivity by physical training intervention. We studied the mechanisms of this impaired exercise response in 20 middle-aged individuals who performed a controlled eight weeks cycling and walking training at 80 % individual VO2max. Participants identified as non-responders in insulin sensitivity (based on Matsuda index) did not differ in pre-intervention parameters compared to high responders. The failure to increase insulin sensitivity after training correlates with impaired up-regulation of mitochondrial fuel oxidation genes in skeletal muscle, and with the suppression of the upstream regulators PGC1 and AMPK2. The muscle transcriptome of the non-responders is further characterized by an activation of TGF and TGF target genes, which is associated with increases in inflammatory and macrophage markers. TGF1 as inhibitor of mitochondrial regulators and insulin signaling is validated in human skeletal muscle cells. Activated TGF1 signaling down-regulates the abundance of PGC1, AMPK2, mitochondrial transcription factor TFAM, and of mitochondrial enzymes. Thus, increased TGF activity in skeletal muscle can attenuate the improvement of mitochondrial fuel oxidation after training and contribute to the failure to increase insulin sensitivity.
TGF-β Contributes to Impaired Exercise Response by Suppression of Mitochondrial Key Regulators in Skeletal Muscle.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Stress signaling in breast cancer cells induces matrix components that promote chemoresistant metastasis.
Specimen part, Cell line, Treatment
View SamplesIn advanced malignancies, cancer cells have acquired capabilities to resist a variety of stress-inducing insults. We show that c-Jun N-terminal kinase (JNK) stress signaling is highly active in cancer cells from patients with late stage breast cancer and promotes tumor growth and metastasis in mouse models. Transcriptomic analysis revealed that JNK activity induces genes associated with extracellular matrix (ECM), wound healing and mammary stem cells. The ECM proteins and niche components osteopontin (SPP1) and tenascin C (TNC) are induced by JNK signaling and promote metastatic colonization of the lungs. Notably, treatment with chemotherapeutic drugs induces JNK activity in breast cancer cells, reinforcing the production of SPP1 and TNC. Inhibition of JNK or reduction of SPP1 or TNC expression sensitizes primary tumors and metastases in mice to chemotherapy.
Stress signaling in breast cancer cells induces matrix components that promote chemoresistant metastasis.
Specimen part, Cell line, Treatment
View SamplesIn advanced malignancies, cancer cells have acquired capabilities to resist a variety of stress-inducing insults. We show that c-Jun N-terminal kinase (JNK) stress signaling is highly active in cancer cells from patients with late stage breast cancer and promotes tumor growth and metastasis in mouse models. Transcriptomic analysis revealed that JNK activity induces genes associated with extracellular matrix (ECM), wound healing and mammary stem cells. The ECM proteins and niche components osteopontin (SPP1) and tenascin C (TNC) are induced by JNK signaling and promote metastatic colonization of the lungs. Notably, treatment with chemotherapeutic drugs induces JNK activity in breast cancer cells, reinforcing the production of SPP1 and TNC. Inhibition of JNK or reduction of SPP1 or TNC expression sensitizes primary tumors and metastases in mice to chemotherapy.
Stress signaling in breast cancer cells induces matrix components that promote chemoresistant metastasis.
Specimen part, Cell line
View SamplesIn advanced malignancies, cancer cells have acquired capabilities to resist a variety of stress-inducing insults. We show that c-Jun N-terminal kinase (JNK) stress signaling is highly active in cancer cells from patients with late stage breast cancer and promotes tumor growth and metastasis in mouse models. Transcriptomic analysis revealed that JNK activity induces genes associated with extracellular matrix (ECM), wound healing and mammary stem cells. The ECM proteins and niche components osteopontin (SPP1) and tenascin C (TNC) are induced by JNK signaling and promote metastatic colonization of the lungs. Notably, treatment with chemotherapeutic drugs induces JNK activity in breast cancer cells, reinforcing the production of SPP1 and TNC. Inhibition of JNK or reduction of SPP1 or TNC expression sensitizes primary tumors and metastases in mice to chemotherapy.
Stress signaling in breast cancer cells induces matrix components that promote chemoresistant metastasis.
Specimen part, Cell line, Treatment
View SamplesGene expression profile was analyzed after knockdown of PAEP in lung cancer cell lines 2106T and H1975 as well as in skin cancer cell line MeWo.
Glycodelin: A New Biomarker with Immunomodulatory Functions in Non-Small Cell Lung Cancer.
Specimen part, Cell line, Treatment
View SamplesPurpose: CEBPA mutations are found as either biallelic (biCEBPA) or monoallelic (moCEBPA). We set out to explore whether the kind of CEBPA mutation is of prognostic relevance in cytogenetically normal AML (CN-AML).
Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome.
Specimen part
View SamplesWe used microarrays to detail the global gene expression changes following apical infection of porcine choroid plexus epithelial cells (PCPEC) with Streptococcus suis (S. suis)
In vitro transcriptome analysis of porcine choroid plexus epithelial cells in response to Streptococcus suis: release of pro-inflammatory cytokines and chemokines.
Specimen part
View SamplesIn this study we analyzed the myeloma cell contact-mediated changes on the transcriptome of skeletal precursor cells. Therefore, human mesenchymal stem cells (MSC) and osteogenic precursor cells (OPC) were co-cultured with the representative myeloma cell line INA-6 for 24 h. Afterwards, MSC and OPC were separated from INA-6 cells by fluorescence activated cell sorting. Total RNA of MSC and OPC fractions was used for whole genome array analysis.
Contact of myeloma cells induces a characteristic transcriptome signature in skeletal precursor cells -Implications for myeloma bone disease.
Sex, Age, Specimen part, Disease stage
View SamplesType II testicular germ cell cancers (GCC) are the most frequently diagnosed tumors in young men (20 - 40 years) and are classified as seminoma or non-seminoma. GCCs are commonly treated by orchiectomy and chemo- or radiotherapy. However, a subset of metastatic non-seminomas display only incomplete remission or relapse and require novel treatment options. Recent studies have shown effective application of the small-molecule inhibitor JQ1 in tumor therapy, which interferes with the function of bromodomain and extra-terminal (BET)-proteins. Here, we demonstrate that upon JQ1 doses 250 nM GCC cell lines and Sertoli cells display compromised survival and induction of cell cycle arrest. JQ1 treated GCC cell lines display upregulation of genes indicative for DNA damage and a cellular stress response. Additionally, downregulation of pluripotency factors and induction of mesodermal differentiation was detected. GCCs xenografted in vivo showed a reduction in tumor size, proliferation and angiogenesis when subjected to JQ1 treatment. The combination of JQ1 and the histone deacetylase inhibitor romidepsin further enhanced the apoptotic effect in vitro and in vivo. Thus, we propose that JQ1 alone, or in combination with romidepsin may serve as a novel therapeutic option for GCCs.
The bromodomain inhibitor JQ1 triggers growth arrest and apoptosis in testicular germ cell tumours in vitro and in vivo.
Specimen part, Cell line, Time
View Samples