refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3078 results
Sort by

Filters

Technology

Platform

accession-icon SRP149944
Transcription profile analysis of wild type and Irf9-/- bone marrow derived macrophages in response to type I and type II interferons
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Host defense by the innate immune system requires the establishment of antimicrobial states allowing cells to cope with microorganisms before the onset of the adaptive immune response. Interferons (IFN) are of vital importance in the establishment of cell-autonomous antimicrobial immunity. Speed is therefore an important attribute of the cellular response to IFN. With much of the antimicrobial response being installed de novo, this pertains foremost to gene expression, the rapid switch between resting-state and active-state transcription of host defense genes. Our results show how mRNA expression changes upon IFNb or IFNg treatment in wild typ and Irf9-/- bone marrow derived macrophages. Overall design: Methods: Bone marrow derived macrophage mRNA of wild-type (WT) and Irf9 knock out mice (IRF9-/-) untreated, as well as 2h IFNb and IFNg treated were generated by deep sequencing, in triplicate, using Illumina sequencing.

Publication Title

A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP188096
Transcription profile analysis of wild type and Irf9-/- mouse embryonic fibroblasts (MEF) in response to type I interferons
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Host defense by the innate immune system requires the establishment of antimicrobial states allowing cells to cope with microorganisms before the onset of the adaptive immune response. Interferons (IFN) are of vital importance in the establishment of cell-autonomous antimicrobial immunity. Speed is therefore an important attribute of the cellular response to IFN. With much of the antimicrobial response being installed de novo, this pertains foremost to gene expression, the rapid switch between resting-state and active-state transcription of host defense genes. Our results show how mRNA expression changes upon IFNb treatment in wild type and Irf9-/- mouse embryonic fibroblasts. Overall design: Methods: Mouse embryonic fibroblast (MEF) mRNA of wild-type (WT) and Irf9 knock out mice (IRF9-/-) untreated, as well as 2h IFNb treated were generated by deep sequencing, in triplicate, using Illumina sequencing.

Publication Title

A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP188099
Transcription profile analysis of wild type and Irf9-/- human monocytic THP1 cells in response to type I interferons
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Host defense by the innate immune system requires the establishment of antimicrobial states allowing cells to cope with microorganisms before the onset of the adaptive immune response. Interferons (IFN) are of vital importance in the establishment of cell-autonomous antimicrobial immunity. Speed is therefore an important attribute of the cellular response to IFN. With much of the antimicrobial response being installed de novo, this pertains foremost to gene expression, the rapid switch between resting-state and active-state transcription of host defense genes. Our results show how mRNA expression changes upon IFNb treatment in wild type and Irf9-/- THP1 cells. Overall design: Methods: mRNA of untreated and IFNb treated wild-type (WT) and Irf9 knock out (IRF9-/-) human monocytic THP1 cells were analyzed by deep sequencing, in triplicate, using Illumina sequencing.

Publication Title

A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP055108
Global Gene Expression analysis of CUTLL1 cell lines after treatment with Perhexiline
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We identify perhexiline, a small molecule inhibitor of mitochondrial carnitine palmitoyltransferase-1, as a HES1-signature antagonist drug with robust antileukemic activity against NOTCH1 induced leukemias in vitro and in vivo. Overall design: RNA-Seq from CUTLL1 cell lines treated with Perhexiline or vehicle for 3 days

Publication Title

Therapeutic targeting of HES1 transcriptional programs in T-ALL.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP185876
Lats1/2 suppress NFkB and aberrant EMT initiation to permit pancreas progenitor differentiation
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The Hippo pathway directs cell differentiation during organogenesis, in part by restricting proliferation. How Hippo signaling maintains a proliferation-differentiation balance in developing tissues and its underlying molecular targets are poorly understood. Our study shows that Hippo suppresses NF?B signaling in pancreatic progenitors to permit cell differentiation and developmental progression. We found that pancreas-specific Lats1/2 kinase deletion (Lats1/2PanKO) from mouse progenitor epithelia results in failure to differentiate 3 key pancreatic lineages: acinar, ductal, and endocrine. We performed an unbiased transcriptome analysis to query the differentiation defects in Lats1/2PanKO. This analysis revealed increased NF?B activator expression, including the pantetheinase Vanin1 (Vnn1). Through in vivo and ex vivo studies, we show that VNN1 activates a detrimental cascade of processes in Lats1/2PanKO epithelium, whereby 1) NF?B activation and 2) initiation of epithelial-to-mesenchymal transition (EMT) together override normal differentiation. We show that exogenous stimulation of VNN1 or NF?B can also trigger this cascade in WT pancreatic progenitors. These findings show that pancreas development requires active suppression of NF?B by LATS1/2 kinases to restrain a cell-autonomous transcriptional program and thereby allow for differentiation. Overall design: RNA-Seq comparing total RNA from 5 WT samples and 3 Lats1/2-deficient pancreas samples at E11.0.

Publication Title

LATS1/2 suppress NFκB and aberrant EMT initiation to permit pancreatic progenitor differentiation.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE60888
Gene expression profile of cell lines 2106T, H1975 and MeWo after knockdown of PAEP.
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression profile was analyzed after knockdown of PAEP in lung cancer cell lines 2106T and H1975 as well as in skin cancer cell line MeWo.

Publication Title

Glycodelin: A New Biomarker with Immunomodulatory Functions in Non-Small Cell Lung Cancer.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE72462
TGF contributes to impaired exercise response by suppression of mitochondrial key regulators in skeletal muscle
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

substantial number of people at risk to develop type 2 diabetes could not improve insulin sensitivity by physical training intervention. We studied the mechanisms of this impaired exercise response in 20 middle-aged individuals who performed a controlled eight weeks cycling and walking training at 80 % individual VO2max. Participants identified as non-responders in insulin sensitivity (based on Matsuda index) did not differ in pre-intervention parameters compared to high responders. The failure to increase insulin sensitivity after training correlates with impaired up-regulation of mitochondrial fuel oxidation genes in skeletal muscle, and with the suppression of the upstream regulators PGC1 and AMPK2. The muscle transcriptome of the non-responders is further characterized by an activation of TGF and TGF target genes, which is associated with increases in inflammatory and macrophage markers. TGF1 as inhibitor of mitochondrial regulators and insulin signaling is validated in human skeletal muscle cells. Activated TGF1 signaling down-regulates the abundance of PGC1, AMPK2, mitochondrial transcription factor TFAM, and of mitochondrial enzymes. Thus, increased TGF activity in skeletal muscle can attenuate the improvement of mitochondrial fuel oxidation after training and contribute to the failure to increase insulin sensitivity.

Publication Title

TGF-β Contributes to Impaired Exercise Response by Suppression of Mitochondrial Key Regulators in Skeletal Muscle.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18759
STAT3 protects from liver injury and fibrosis in a mouse model of sclerosing cholangitis.
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Background and aims: Signal transducer and activator of transcription 3 (Stat3) is the main mediator of interleukin-6 type cytokine signaling required for hepatocyte proliferation and hepatoprotection but its role in sclerosing cholangitis (SC) and other cholestatic liver diseases remains unresolved. Methods: We investigated the role of Stat3 in inflammation-induced cholestatic liver injury and used mice lacking the multidrug resistance gene 2 (mdr2-/-) as a model for SC. Results: We demonstrate that conditional inactivation of stat3 in hepatocytes and cholangiocytes (stat3hc) of mdr2-/- mice strongly aggravated bile acid-induced liver injury and fibrosis. Similarly, stat3hc mice are more sensitive to cholic acid feeding than control mice. Global gene expression analysis demonstrated that hepatoprotective signals via epidermal growth factor and insulin-like growth factor 1 are affected upon loss of Stat3. Conclusions: Our data suggest that Stat3 protects cholangiocytes and hepatocytes from bile acid-induced damage thereby preventing liver fibrosis in cholestatic diseases.

Publication Title

Signal transducer and activator of transcription 3 protects from liver injury and fibrosis in a mouse model of sclerosing cholangitis.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE15210
Gene expression profiles of mono- and biallelic CEBPA mutations in cytogenetically normal AML
  • organism-icon Homo sapiens
  • sample-icon 61 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Purpose: CEBPA mutations are found as either biallelic (biCEBPA) or monoallelic (moCEBPA). We set out to explore whether the kind of CEBPA mutation is of prognostic relevance in cytogenetically normal AML (CN-AML).

Publication Title

Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23751
In Vitro Transcriptome Analysis of Porcine Plexus Epithelial Cells in Response to Streptococcus suis: Functions of the Choroid Plexus in Antimicrobial Defense
  • organism-icon Sus scrofa
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

We used microarrays to detail the global gene expression changes following apical infection of porcine choroid plexus epithelial cells (PCPEC) with Streptococcus suis (S. suis)

Publication Title

In vitro transcriptome analysis of porcine choroid plexus epithelial cells in response to Streptococcus suis: release of pro-inflammatory cytokines and chemokines.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact