This SuperSeries is composed of the SubSeries listed below.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Sex, Age, Specimen part, Time
View SamplesAnalysis of effect of long-term cryopreservation on peripheral blood mononuclear cells at gene expression level. The hypothesis tested in the present study was that long-term cryopreservation has an influence on the transcriptome profile of peripheral blood mononuclear cells. Results indicated remarkable changes in expression patterns upon cryopreservation of PBMCs, with decreasing signal intensities over time.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Sex, Age, Specimen part, Time
View SamplesAnalysis of cryopreservation effects on peripheral blood mononuclear cells at gene expression level. The hypothesis tested in the present study was that cryopreservation has an influence on the transcriptome profile of peripheral blood mononuclear cells. Results indicated remarkable changes in expression patterns upon cryopreservation of PBMCs, with a strong loss of signal intensities to background levels for several transcripts.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Age, Specimen part
View SamplesAnalysis of long-term freezing on the stability of transcriptome profiles in PAXgene stabilized whole blood samples. In the present study it was tested if long-term freezing of PAXgene RNA tubes (up to one year) has an influence on the transcriptome profile of peripheral whole blood samples. Results indicated that gene expression profiles of whole blood samples stabilized with PAXgene RNA tubes remain stable for at least 1 year.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Sex, Age, Specimen part, Time
View SamplesSphingosine 1-phosphate (S1P) influences T cell migration into and out of secondary lymphoid organs; however, its mechanism of action remains uncertain. Our previous research shows that agonism of the S1P receptor S1P1 inhibits the egress of T lymphocytes from the peripheral tissues into afferent lymphatics. To better define the mechanism of inhibition, we developed an in vitro model to characterize T cell transendothelial migration across lymphatics. Two commercially available endothelial cell lines (MS-1 and SVEC4-10) were characterized by flow cytometry, real time RT-PCR, and Affymetrix Gene Array. These cell lines were grown to confluent monolayers in transwell systems, on either the upper or lower surface of the transwell insert. T cells were isolated from the spleens of (C57BL/6 x C3H/HeJ)F1, S1P1 KO, or S1P1 KO littermate controls, and either treated with the S1P receptor modulator FTY720 or left untreated. Cells were migrated to chemokines (CCL19 or CCL21) for 4 hours, and migration quantified. Flow cytometry, RT-PCR, and array results identified MS-1 as a blood vascular endothelial cell line, expressing high levels of CD31, CD34, and ICAM-1 as well as other endothelial cell markers; while SVEC4-10 closely resemble a lymphatic phenotype, expressing LYVE-1, VEGFR-3, and podoplanin. T cells efficiently migrate across MS-1, whether grown on the upper or lower surface; whereas migration across SVEC4-10 only occurs when cells are grown on the lower surface of the transwell (iSVEC), recapitulating basal (abluminal) to apical (luminal) migration that occurs in vivo. FTY720 inhibits T cell migration across iSVEC, but not across MS-1. Inhibition is due to drug effects only on T cells but not endothelial cells. S1P1 KO T cells treated with FTY720 are not inhibited in their migration across the iSVEC line, showing that S1P1 stimulation is required for migration inhibition. The in vitro model developed here is the first to use endothelial cell lines to analyze the regulation of T cell migration across lymphatic endothelium. The results show there is directional control of T cell migration across lymphatic cells, such that T cells only migrate from a basal to apical direction. Agonism of S1P1 specifically inhibits migration, while absence of the receptor does not. These findings have important implications for the use of S1P1 agonists in transplantation, as inhibition of cell entry into afferent lymphatics and lymph nodes could impede the development of graft rejection.
The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics.
Specimen part
View SamplesTo gain a deep understanding of mRNA turnover dynamics in mammalian cells, we pulse labeled newly synthesized RNA in 3t3 cells for 2 h with 4sU. RNA samples were fractionated into the newly synthesized and pre-existing fractions. Both fractions and the total RNA sample were analyzed by mRNA sequencing. We estimated mRNA half-lives based on the ratios of newly synthesized RNA/total RNA ratio and the preexisting RNA/total RNA.
Global quantification of mammalian gene expression control.
No sample metadata fields
View SamplesBiofilms are surface-adhered bacterial communities encased in an extracellular matrix composed of polysaccharides, proteins, and extracelluar (e)DNA, with eDNA being required for the formation and integrity of biofilms. Here we demonstrate that the spatial and temporal release of eDNA is regulated by BfmR, a regulator essential for Pseudomonas aeruginosa biofilm development. The expression of bfmR coincided with localized cell death and DNA release, with high eDNA concentrations localized to the outer part of microcolonies in the form of a ring and as a cap on small clusters. Additionally, eDNA release and cell lysis increased significantly following bfmR inactivation. Genome-wide transcriptional profiling indicated that bfmR was required for repression of genes associated with bacteriophage assembly and bacteriophage-mediated lysis. In order to determine which of these genes were directly regulated by BfmR, we utilized chromatin immunoprecipitation (ChIP) analysis to identify the promoter of PA0691, termed here phdA, encoding a previously undescribed homologue of the prevent-host-death (Phd) family of proteins. Lack of phdA expression coincided with impaired biofilm development, increased cell death and bacteriophage release, a phenotype comparable to bfmR. Expression of phdA in bfmR biofilms restored eDNA release, cell lysis, release of bacteriophages, and biofilm formation to wild type levels. Moreover, overexpression of phdA rendered P. aeruginosa resistant to lysis mediated by superinfective bacteriophage Pf4 which was only detected in biofilms. The expression of bfmR was stimulated by conditions resulting in membrane perturbation and cell lysis. Thus, we propose that BfmR regulates biofilm development by controlling bacteriophage-mediated lysis and thus, cell death and eDNA release, via PhdA.
The novel Pseudomonas aeruginosa two-component regulator BfmR controls bacteriophage-mediated lysis and DNA release during biofilm development through PhdA.
No sample metadata fields
View SamplesA hallmark of the biofilm architecture is the presence of microcolonies. However, little is known about the underlying mechanisms governing microcolony formation. In the human pathogen Pseudomonas aeruginosa, microcolony formation is dependent on the two-component regulator MifR, with mifR mutant biofilms exhibiting an overall thin structure lacking microcolonies, and overexpression of mifR resulting in hyper-microcolony formation. Here, we made use of the distinct MifR-dependent phenotypes to elucidate mechanisms associated with microcolony formation. Using global transcriptomic and proteomic approaches, we demonstrate that cells located within microcolonies experience stressful, oxygen limited, and energy starving conditions, as indicated by the activation of stress response mechanisms and anaerobic and fermentative processes, in particular pyruvate fermentation. Inactivation of genes involved in pyruvate utilization including uspK, acnA and ldhA abrogated microcolony formation in a manner similar to mifR inactivation. Moreover, depletion of pyruvate from the growth medium impaired biofilm and microcolony formation, while addition of pyruvate significantly increased microcolony formation. Addition of pyruvate partly restored microcolony formation in mifR biofilms. Moreover, addition of pyruvate to or expression of mifR in lactate dehydrogenase (ldhA) mutant biofilms did not restore microcolony formation. Consistent with the finding of denitrification genes not demonstrating distinct expression patterns in biofilms forming or lacking microcolonies, addition of nitrate did not alter microcolony formation. Our findings indicate the fermentative utilization of pyruvate to be a microcolony-specific adaptation to the oxygen limitation and energy starvation of the P. aeruginosa biofilm environment.
Microcolony formation by the opportunistic pathogen Pseudomonas aeruginosa requires pyruvate and pyruvate fermentation.
No sample metadata fields
View SamplesJoMa1 cells are pluripotent precursor cells, derived from the neural crest of mice transgenic for tamoxifen-inducible c-Myc. Following transfection with a cDNA encoding for MYCN, cells become immortlized even in the absence of tamoxifen.
MYCN and ALKF1174L are sufficient to drive neuroblastoma development from neural crest progenitor cells.
Specimen part, Cell line
View SamplesThe protease activity of the paracaspase MALT1 plays an important role in antigen receptor-mediated lymphocyte activation by controlling the activity of the transcription factor NF-kB and is thus essential for the expression of inflammatory target genes.
MALT1 Protease Activity Controls the Expression of Inflammatory Genes in Keratinocytes upon Zymosan Stimulation.
Treatment
View Samples