refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3078 results
Sort by

Filters

Technology

Platform

accession-icon GSE7342
Expression data from p38 knock out versus wild type fetal liver
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The mitogen-activated protein kinase (MAPK) p38alpha controls inflammatory responses and cell proliferation. Using mice carrying conditional p38alpha alleles, we investigated its function in postnatal development and tumorigenesis. When p38alpha is specifically deleted in the mouse embryo, fetuses develop to term but die shortly after birth, likely due to lung dysfunction. Fetal hematopoietic cells and embryonic fibroblasts deficient in p38alpha display increased proliferation, resulting from sustained activation of the c-Jun N-terminal kinase (JNK)/c-Jun pathway. Importantly, in chemical-induced liver cancer development, mice with liver-specific deletion of p38alpha show enhanced hepatocyte proliferation and tumor development that also correlates with JNK/c-Jun upregulation. Furthermore, increased proliferation of p38alpha-deficient hepatocytes and tumor cells is suppressed by inactivation of JNK or c-Jun. These results reveal a novel mechanism whereby p38alpha negatively regulates cell proliferation through antagonizing the JNK/c-Jun pathway in multiple cell types and in liver cancer development.

Publication Title

p38alpha suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2466
B_Cell_Chronic_Lymphocytic_Leukemia
  • organism-icon Homo sapiens
  • sample-icon 111 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95A Array (hgu95a)

Description

We used high density oligonucleotide arrays to identify molecular correlates of genetically and clinically distinct subgroups of B-cell chronic lymphocytic leukemia (B-CLL). Gene expression profiling was used to profile the five most frequent genomic aberrations, namely deletions affecting chromosome bands 13q14, 11q22-q23, 17p13 and 6q21, and gains of genomic material affecting chromosome band 12q13. A strikingly high degree of correlation between loss or gain of genomic material and the amount of transcripts from the affected regions leads to the hypothesis of gene dosage as a significant pathogenic factor. Furthermore, the influence of the immunoglobulin variable heavy chain (VH) mutation status was determined. A clear distinction in the expression profiles of unmutated and mutated VH samples exists, which can be discovered using unsupervised learning methods. However, when samples were separated by gender, this separation could only be detected in samples from male patients.

Publication Title

Microarray gene expression profiling of B-cell chronic lymphocytic leukemia subgroups defined by genomic aberrations and VH mutation status.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP065849
A novel RAF kinase inhibitor with DFG-out binding mode: high efficacy in BRAF-mutant tumor xenograft models in the absence of normal tissue hyperproliferation
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq1000

Description

Purpose: Seek for differential gene expression in vemurafenib-resistant A375 tumors vs. untreated controls to provide a rationale for resistance mechanism Methods: mRNA profiles of vemurafenib-resistant A375 tumors and untreated control tumors were generated by transcriptome sequencing of A375 melanoma bearing mice. Since our xenograft samples contain a mixture of human and mouse RNAs we mapped RNASeq reads against a hybrid human/mouse genome. We than removed reads of potential mouse origin by taking only reads that map uniquely to human chromosomes. On average 23% of reads were removed as potential mouse reads. We than took the remaining reads (on average 77% per sample) to determine the gene expression levels for each sample. Normalized expression levels of 5 resistant samples were compared to 4 untreated control samples to detect differnetially regulated genes which may contribute to vemurfenib resistance Results: Expression levels of several genes were consistently altered in all resistant samples. Expression of e.g. genes encoding SPRY2, SPRY4, DUSP6, CCND1, PIK3R3, FGFR1, EPHA4, MCL1, and IGF1R was down-regulated, whereas expression of PDGFC, VEGFC, ABCB9 and KITLG was increased. Conclusions: Our study reports several differentially expressed genes which may contribute to vemurafenib resistance in A375 tumor bearing mice Overall design: RNA sequencing of genes expressed in A375 tumors bearing mice treated with vemurafenib until in vivo resistance appeared vs. untreated A375 tumors

Publication Title

A Novel RAF Kinase Inhibitor with DFG-Out-Binding Mode: High Efficacy in BRAF-Mutant Tumor Xenograft Models in the Absence of Normal Tissue Hyperproliferation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE5583
Expression data from wild type versus HDAC knock out mouse embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Histone deacetylase 1 (HDAC1) is an enzyme that promotes deacetylation of acetylated lysine residues in histones and other proteins. Histone acetylation is often associated with gene activation and expression. Los of HDAC1 leads to severe problems in development and proliferation. Moreover, it seems to be the major histone deacetylase in mouse embryonic stem cells.

Publication Title

Negative and positive regulation of gene expression by mouse histone deacetylase 1.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE109304
Efficacy of the highly selective focal adhesion kinase inhibitor BI 853520 in adenocarcinoma xenograft models is linked to a mesenchymal tumor phenotype
  • organism-icon Homo sapiens
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [CDF: Brainarray Version 16.1.0, HsEx10stv2_Hs_REFSEQ (huex10st), Affymetrix Multispecies miRNA-3 Array (mirna3)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Efficacy of the highly selective focal adhesion kinase inhibitor BI 853520 in adenocarcinoma xenograft models is linked to a mesenchymal tumor phenotype.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE109302
Efficacy of the highly selective focal adhesion kinase inhibitor BI 853520 in adenocarcinoma xenograft models is linked to a mesenchymal tumor phenotype [mRNA]
  • organism-icon Homo sapiens
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [CDF: Brainarray Version 16.1.0, HsEx10stv2_Hs_REFSEQ (huex10st)

Description

mRNA expression profiling of untreated CDX samples and correlation with sensitivity data derived from treatments with BI 853520.

Publication Title

Efficacy of the highly selective focal adhesion kinase inhibitor BI 853520 in adenocarcinoma xenograft models is linked to a mesenchymal tumor phenotype.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE63693
Prostate Cancer Risk SNPs enriched in Androgen Receptor Binding Sites
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Genome-wide association studies (GWAS) have identified dozens of genomic loci, whose single nucleotide polymorphisms (SNPs) predispose to prostate cancer (PCa). However, the biological functions of these common genetic variants and the mechanisms to increase disease risk are largely unknown. We integrated chromatin-IP coupled sequencing (ChIP-seq) and microarray expression profiling in the TMPRSS2-ERG gene rearrangement positive DuCaP cell model with the NHGRI GWAS PCa risk SNPs catalog, in an attempt to identify disease susceptibility SNPs localized within functional androgen receptor binding sites (ARBSs). Among the 48 GWAS index SNPs and 2,702 linked SNPs defined by the 1000G project 104 were found to be localized in the AR ChIP-seq peaks. Of these risk SNPs, rs11891426 T/G in the 7th intron of its host gene melanophilin (MLPH) was found located within a putative auxiliary ARE motif, which we found enriched in the neighborhood of canonical ARE motifs. Exchange of T to G attenuated the transcriptional activity of the MLPH-ARBS in a reporter gene assay. The expression of MLPH protein in tissue samples from prostate cancer patients was significantly lower in those with the G compared to the T allele. Moreover, a significant positive correlation of AR and MLPH protein expression levels was also confirmed in tissue samples. These results unravel a hidden link between AR and a functional PCa risk SNP rs11891426, whose allele alteration affects androgen regulation of its host gene MLPH. This study shows the power of integrative studies to pin down functional risk SNPs and justifies further investigations.

Publication Title

Putative Prostate Cancer Risk SNP in an Androgen Receptor-Binding Site of the Melanophilin Gene Illustrates Enrichment of Risk SNPs in Androgen Receptor Target Sites.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE23522
Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE23514
Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB (Exon array)
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

To gain global insights into the role of the well-known repressive splicing regulator PTB we analyzed the consequences of PTB knockdown in HeLa cells using high-density oliogonucleotide splice-sensitive microarrays. The major class of identified PTB-regulated splicing event was PTB-repressed cassette exons, but there was also a substantial number of PTB-activated splicing events. PTB repressed and activated exons showed a distinct arrangement of motifs with pyrimidine-rich motif enrichment within and upstream of repressed exons, but downstream of activated exons. The N-terminal half of PTB was sufficient to activate splicing when recruited downstream of a PTB-activated exon. Moreover, insertion of an upstream pyrimidine tract was sufficient to convert a PTBactivated to a PTB-repressed exon. Our results demonstrate that PTB, an archetypal splicing repressor, has variable splicing activity that predictably depends upon its binding location with respect to target exons.

Publication Title

Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE3865
CSN4-1 mutant analysis
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Transcript profiling analysis of csn4-1 light grown mutant seedlings compared to wild type using Arabidopsis ATH1 GeneChip array

Publication Title

Characterization of the VIER F-BOX PROTEINE genes from Arabidopsis reveals their importance for plant growth and development.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact