To identify the CAR-, PXR- and PPAR-specific genome-wide expression changes, hepatocyte cultures from six individual donors were treated with the prototypical ligands for
Genomewide comparison of the inducible transcriptomes of nuclear receptors CAR, PXR and PPARα in primary human hepatocytes.
Sex, Age
View SamplesThe goal of the study is a high-throughput evaluation of the effect of TGFb treatment on gene expression.
Resolving the Combinatorial Complexity of Smad Protein Complex Formation and Its Link to Gene Expression.
Specimen part
View SamplesWe used microarray to detect pathway differences in the hippocampus in mucopolysaccharidosis type VII ( MPS VII ), a mouse model of a lysosomal storage disease
Integrated analysis of proteome and transcriptome changes in the mucopolysaccharidosis type VII mouse hippocampus.
Sex, Age, Specimen part
View SamplesChronic tendon injuries, also known as tendinopathy, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure and yet little is known about the molecular mechanism leading to tendinopathy. We have used histological evaluation and molecular profiling to determine the gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Diseased tendons have altered extracellular matrix, fiber disorientation, increased cellular content and vasculature and the absence of inflammatory cells. Global gene expression profiling identified 1783 transcripts with significant different expression patterns in the diseased tendons. Global pathway analysis further suggests altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. We have identified pathways and genes regulated in tendinopathy samples that will help contribute to the understanding of the disease towards the development of novel therapeutics.
Regulation of gene expression in human tendinopathy.
Sex, Age, Specimen part, Disease, Disease stage, Subject
View SamplesSkeletal muscle atrophy is a consequence of many diseases, environmental insults, inactivity, age and injury. Atrophy is characterized by active degradation and removal of contractile proteins and a reduction in fiber size. Animal models have been extensively used to identify pathways leading to atrophic conditions. Here we have used genome-wide expression profiling analysis and quantitative PCR to identify the molecular changes that occur in two clinically relevant animal mouse models of muscle atrophy, hindlimb casting and Achilles tendon laceration (tenotomy). Gastrocnemius muscle samples were collected 2, 7 and 14 days after insult. The total amount of muscle loss as measured by wet weight and muscle fiber size was equivalent between models, although tenotomy resulted in a more rapid induction of muscle atrophy. Furthermore, tentomy resulted in the regulation of significantly more mRNA transcripts then casting. Analysis of the regulated genes and pathways suggest that the mechanism of atrophy is distinct between these models. The degradation following casting appears ubiquitin-proteasome-mediated while degradation following tenotomy appears lysosomal and matrix-metalloproteinase (MMP)-mediated. This data suggests that there are multiple mechanisms leading to muscle atrophy and that specific therapeutic agents may be necessary to combat the atrophy seen under different conditions.
Distinct protein degradation profiles are induced by different disuse models of skeletal muscle atrophy.
Sex, Specimen part, Treatment, Time
View SamplesConstitutive activation of the anti-apoptotic NF-B signaling pathway is a hallmark of the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphomas (DLBCL) that is characterized by adverse survival. Recurrent oncogenic mutations are found in the scaffold protein CARMA1 (CARD11) that connects B-cell receptor (BCR) signaling to the canonical NF-B pathway. We asked how far additional downstream processes are activated and contribute to the oncogenic potential of DLBCL-derived CARMA1 mutants. To this end, we expressed oncogenic CARMA1 mutants in the NF-B negative DLBCL lymphoma cell line BJAB. By a proteomic approach we identified recruitment of -Catenin and its destruction complex consisting of APC, AXIN1, CK1 and GSK3 to oncogenic CARMA1. Recruitment of the -Catenin destruction complex was independent of CARMA1-BCL10-MALT1 (CBM) complex formation or constitutive NF-B activation and promoted the stabilization of -Catenin. Elevated -Catenin expression was detected in cell lines and biopsies from ABC DLBCL that rely on chronic BCR signaling. Increased -Catenin amounts alone were not sufficient to induce classical WNT target gene signatures, but could augment TCF/LEF dependent transcriptional activation in response to WNT signaling. In conjunction with NF-B, -Catenin enhanced expression of immune suppressive IL-10 and repressed anti-tumoral CCL3, indicating that -Catenin may induce a favorable tumor microenvironment. Thus, parallel activation of NF-B and -Catenin signaling by gain-of-function mutations in CARMA1 can augment WNT stimulation and is required for maintaining high expression of distinct NF-B target genes and can thereby trigger cell intrinsic and extrinsic processes that promote DLBCL lymphomagenesis.
Oncogenic CARMA1 couples NF-κB and β-catenin signaling in diffuse large B-cell lymphomas.
Specimen part, Cell line
View SamplesILC210 represent a distinct effector population of ILC2 cells that have regulatory potential Overall design: comparison between ILC2 cells with IL-33 stimulation or not on transcriptome change
Alternative activation generates IL-10 producing type 2 innate lymphoid cells.
Specimen part, Subject
View SamplesSubtypes of innate lymphoid cells (ILC), defined by effector function and transcription factor expression, have recently been identified. In the adult, ILC derive from common lymphoid progenitors in bone marrow, although transcriptional regulation of the developmental pathways involved remains poorly defined. TOX is required for development of lymphoid tissue inducer cells, a type of ILC3 required for lymph node organogenesis, and NK cells, a type of ILC1. We show here that production of multiple ILC lineages requires TOX, as a result of TOX-dependent development of common ILC progenitors. Comparative transcriptome analysis demonstrated failure to induce various aspects of the ILC gene program in the absence of TOX, implicating this nuclear factor as a key early determinant of ILC lineage specification. Overall design: TOX KO vs. wild tyype
The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor.
No sample metadata fields
View SamplesChanges in the transcriptomic profile of the Sciencell human astrocytes, after hypoxia treatment were compared to control cells receiving no treatment, to identify differentially expressed genes and pathways.
Transcriptomic Analysis of Human Astrocytes In Vitro Reveals Hypoxia-Induced Mitochondrial Dysfunction, Modulation of Metabolism, and Dysregulation of the Immune Response.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Mechanistic Differences in Neuropathic Pain Modalities Revealed by Correlating Behavior with Global Expression Profiling.
Sex, Specimen part, Treatment
View Samples