The yeast Mediator complex can be divided into three modules, designated Head, Middle and Tail. Tail comprises the Med2, Med3, Med5, Med15 and Med16 protein subunits, which are all encoded by genes that are individually non-essential for viability. In cells lacking Med16, Tail is displaced from Head and Middle. However, inactivation of MED5/MED15 and MED15/MED16 are synthetically lethal, indicating that Tail performs essential functions as a separate complex even when it is not bound to Middle and Head. We have used the N-Degron method to create temperature sensitive (ts) mutants in the Mediator tail subunits Med5, Med15 and Med16 to study the immediate effects on global gene expression when each subunit is individually inactivated, and when MED5/15 or MED15/16 are inactivated together.
Functional studies of the yeast med5, med15 and med16 mediator tail subunits.
No sample metadata fields
View SamplesIdentifying the effect of the co-chaperone SGTA on global androgen receptor transcriptional activity in C4-2B prostate cancer cells with view to further elucidating the broader biological role of SGTA on other signaling pathways within prostate cancer cells
Knockdown of the cochaperone SGTA results in the suppression of androgen and PI3K/Akt signaling and inhibition of prostate cancer cell proliferation.
Specimen part, Treatment
View SamplesThe wheat gene Lr34 (Yr18/Pm38/Sr57/Ltn1) encodes a putative ABCG-type of transporter and is a unique source of disease resistance providing durable and partial resistance against multiple fungal pathogens. Lr34 has been found to be functional as a transgene in barley.
The wheat resistance gene Lr34 results in the constitutive induction of multiple defense pathways in transgenic barley.
Specimen part
View SamplesThe effect of transient transfection of a construct designed to over-express the androgen receptor (AR) variant AR-V7 on gene expression in MDA-MB-453 cells was assessed using Affymetrix Gene 2.0 ST arrays. Transfection of an AR-expressing construct or an empty construct served as controls.
Expression of androgen receptor splice variants in clinical breast cancers.
Cell line
View SamplesLNCaP cells were maintained in charcoal-stripped serum containing medium for 48 hours and treated with vehicle or 10 uM of UT-69, UT-155, R-UT-155, or enzalutamide. Twenty four hours after treatment, the cells were harvested, RNA was isolated and expression of genes was measured using microarray (Affymetrix Clarion S)
Novel Selective Agents for the Degradation of Androgen Receptor Variants to Treat Castration-Resistant Prostate Cancer.
Cell line
View SamplesSynapse development and neuronal activity represent fundamental processes for the establishment of cognitive function. Structural organization as well as signalling pathways from receptor stimulation to gene expression regulation are mediated by synaptic activity and misregulated in neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID). Deleterious mutations in the PTCHD1 (Patched domain containing 1) gene have been described in male patients with X-linked ID and/or ASD. The structure of PTCHD1 protein is similar to the Patched (PTCH1) receptor; however, the cellular mechanisms and pathways associated with PTCHD1 in the developing brain are poorly determined. Here we show that PTCHD1 displays a C-terminal PDZ-binding motif that binds to the postsynaptic proteins PSD95 and SAP102. We also report that PTCHD1 is unable to rescue the canonical sonic hedgehog (SHH) pathway in cells depleted of PTCH1, suggesting that both proteins are involved in distinct cellular signalling pathways. We find that Ptchd1 deficiency in male mice (Ptchd1-/y) induces global changes in synaptic gene expression, affects the expression of the immediate-early expression genes Egr1 and Npas4 and finally impairs excitatory synaptic structure and neuronal excitatory activity in the hippocampus, leading to cognitive dysfunction, motor disabilities and hyperactivity. Thus our results support that PTCHD1 deficiency induces a neurodevelopmental disorder causing excitatory synaptic dysfunction. Overall design: 6 samples RNA-seq. 3 kos, 3wts.
Ptchd1 deficiency induces excitatory synaptic and cognitive dysfunctions in mouse.
Specimen part, Cell line, Subject
View SamplesAnalysis of C4-2 prostate cancer cell line after 6 hrs of treatment with TOPK-32. PBK is overexpressed in a number of solid tumours, including prostate cancer. Results provide insight into the molecular mechanisms of PBK in prostate carcinogenesis. Overall design: This experiment was designed to understand the regulation of transcriptome by PDZ domain binding kinase, which is an important kinase with role in cell cycle. The cells were treated with a catalytic inhibitor TOPK32 which inhibits the kinase activity of PBK protein.
A reciprocal feedback between the PDZ binding kinase and androgen receptor drives prostate cancer.
No sample metadata fields
View SamplesAnalysis of C4-2 Prostate cancer cell line after 72 hours of knockdown. PBK is overexpressed in a number of solid tumours, including prostate cancer. Results provide insight into the molecular mechanisms of PBK in prostate carcinogenesis. Overall design: This experiment was designed to understand the regulation of transcriptiome by PDZ domain binding kinase (PBK), which is an important kinase with role in cell cycle. In order to achieve this, the endogenous protein was knocked down using siRNA pool that targets the PBK mRNA.
A reciprocal feedback between the PDZ binding kinase and androgen receptor drives prostate cancer.
No sample metadata fields
View SamplesThe abstract of the associated publication (Selga E, No V, Ciudad CJ. Biochemical Pharmacology, 2008) is the following:
Transcriptional regulation of aldo-keto reductase 1C1 in HT29 human colon cancer cells resistant to methotrexate: role in the cell cycle and apoptosis.
No sample metadata fields
View SamplesAnalysis of C4-2 Prostate cancer cell line after 72 hours of knockdown. CHKA is overexpressed in a number of solid tumours, including prostate cancer. Results provide insight into the molecular mechanisms of CHKA in prostate carcinogenesis. Overall design: This experiment was designed to understand the regulation of transcriptome by Choline kinase alpha (CHKA) which is an important enzyme in Kennedy pathway. In order to achieve this, the endogenous protein was knocked down using siRNA pool that targets the CHKA mRNA.
Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target.
No sample metadata fields
View Samples