refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 203 results
Sort by

Filters

Technology

Platform

accession-icon GSE93745
Functional role and therapeutic targeting of p21-associated kinase 4 (PAK4) in Multiple Myeloma
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Dysregulated oncogenic serine/threonine kinases play a pathological role in diverse forms of malignancies, including multiple myeloma (MM), and thus represent potential therapeutic targets. Here, we evaluated the biological and functional role of p21-activated kinase 4 (PAK4), and its potential as a new target in MM for clinical applications. PAK4 promoted MM cell growth and survival via activation of MM survival signaling pathways, including the MEK-ERK pathway. Furthermore, treatment with orally bioavailable PAK4 allosteric modulator (KPT-9274) significantly impacted MM cell growth and survival in a large panel of MM cell lines and primary MM cells alone and in the presence of bone marrow microenvironment. Intriguingly, we have identified FGFR3 as a novel binding partner of PAK4 and observed significant activity of KPT-9274 against t(4;14)-positive MM cells. These data support PAK4 as an oncogene in myeloma, and provide the rationale for the clinical evaluation of PAK4 modulator in myeloma.

Publication Title

Functional role and therapeutic targeting of p21-activated kinase 4 in multiple myeloma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE26828
Global gene expression analysis of six cadmium-transformed UROtsa cell isolates
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The immortalized human urothelial cell line, UROtsa, was transformed in six parallel cultures with continual passaging in1 M Cd+2 until the cells were able to attain the ability to form colonies in soft agar and subcutaneous tumors in nude mice. The gene expression profiles between cadmium-transformed and control samples were compared and the differentially expressed genes were identified.

Publication Title

Variation of keratin 7 expression and other phenotypic characteristics of independent isolates of cadmium transformed human urothelial cells (UROtsa).

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE32355
E2f7/E2f8 and E2f1/E2f2/E2f3 null and wild type liver along with E2f7/E2f8 null and wild type trophoblast giant cells
  • organism-icon Mus musculus
  • sample-icon 101 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Canonical and atypical E2Fs regulate the mammalian endocycle.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE32354
Expression data from E2f7/E2f8 and E2f1/E2f2/E2f3 null liver (Affymetrix)
  • organism-icon Mus musculus
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To understand the underlying cause and mechanisms of changes in hepatocyte ploidy upon Albumin-Cre mediated deletion of E2f7&8 and Mx1-Cre mediated deletion of E2f1,2&3, we analysed global gene expression of 6 weeks and 2 months liver tissues.

Publication Title

Canonical and atypical E2Fs regulate the mammalian endocycle.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE57613
Hypoxia regulates alternative splicing of HIF and non-HIF target genes
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Human Exon 1.0 ST Array (huex10st)

Description

Alternative RNA splicing analysis in Hep3B cell cultured under 21% (N1,3,5) or 1.2% (H2,4,6) oxygen

Publication Title

Hypoxia regulates alternative splicing of HIF and non-HIF target genes.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE71383
Balanced E2F transcriptional output is essential for tumor suppression in the liver
  • organism-icon Mus musculus
  • sample-icon 92 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

E2f8 mediates tumor suppression in postnatal liver development.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE71380
E2f regulation of gene expression in the liver [1 mo]
  • organism-icon Mus musculus
  • sample-icon 59 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

E2Fs are regulators of the cell cycle and are involved in development. In this study we examine transcriptional changes occurring the liver in E2f1 (1KI) and E2f3b (3bKI) knock in mice. These mice have E2f1 or E2f3b knocked into the E2F3a locus resulting in loss of E2f3a and expression of E2f1 or E2f3b from the E2f3a locus as originally described In Tsai et. al., Nature 2008.

Publication Title

E2f8 mediates tumor suppression in postnatal liver development.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE71381
E2f regulation of gene expression in the liver [12 mo]
  • organism-icon Mus musculus
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

E2Fs are regulators of the cell cycle and are involved in development and hepatocellular carcinoma. In this study we examine transcriptional changes occurring the liver in E2f1 (1KI) and E2f3b (3bKI) knock in mice. These mice have E2f1 or E2f3b knocked into the E2F3a locus resulting in loss of E2f3a and expression of E2f1 or E2f3b from the E2f3a locus as originally described In Tsai et. al., Nature 2008.

Publication Title

E2f8 mediates tumor suppression in postnatal liver development.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE9996
Organ regeneration in plants is independent of stem cell niche activity
  • organism-icon Arabidopsis thaliana
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

A critical step in regeneration is recreating the cellular identities and patterns of lost organs long after embryogenesis is complete. In plants, perpetual (indeterminate) organ growth occurs in apical stem cell niches, which have been shown to re-establish quickly when damaged or removed (1,2). Here we ask whether the machinery of perpetual organ growth, stem cell activity, is needed for the phase of regeneration that leads to replenishing lost cell identities and patterning, or, whether organ re-establishment enlists a wider group of pluripotent cells. We adapt a root tip regeneration system to Arabidopsis that permits us to assess the molecular and functional recovery of specific cell fates during organ regeneration. These results suggest a rapid restoration of missing cell fate and function in advance of the recovery of stem cell activity. Surprisingly, plants with mutations that fail to maintain stem cell activity were able to re-pattern their distal tip and re-specify lost cell fates. Thus, although stem cell activity is required to resume indeterminate growth (3), our results show it is not necessary for cell re-specification and patterning steps. This implies a regeneration mechanism that coordinates patterning of the whole organ, as in embryogenesis, but is initiated from different starting morphologies. 1. Feldman, L. J. Denovo Origin of Quiescent Center Regenerating Root Apices of Zea-Mays. Planta 128, 207-212 (1976). 2. Xu, J. et al. A molecular framework for plant regeneration. Science 311, 385-8 (2006). 3. Gordon, S. P. et al. Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134, 3539-48 (2007).

Publication Title

Organ regeneration does not require a functional stem cell niche in plants.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE93970
CD54-mediated interaction with pro-inflammatory macrophages increases the immunosuppresive function of human mesenchymal stromal cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Mesenchymal stromal cells (MSCs) sense and modulate inflammation and represent potential clinical treatment for immune disorders. However, many details of the bidirectional interaction between MSCs and the innate immune comaprtment are still unsolved. Here we describe an unconventional but functional interaction between pro-inflammatory classically activated macrophages (M1M) and MSCs, with CD54 playing a central role. CD54 was upregulated and enriched specifically at the contact area between M1M and MSCs. Moreover, the specific interaction induced calcium signaling and increased the immunosuppressive capacities of MSCs dependent on CD54 mediation. Our data demonstrate that MSCs can detect an inflammatory microenvironment via a direct and physical interaction with innate immune cells. This finding opens new perspectives for MSC-based cell therapy.

Publication Title

CD54-Mediated Interaction with Pro-inflammatory Macrophages Increases the Immunosuppressive Function of Human Mesenchymal Stromal Cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact