The placenta serves as the structural interface for nutrient and waste exchange for proper fetal development. Although defects in placental function result in various placental disorders, molecular mechanisms orchestrating placental development and function are poorly understood. Gene targeting studies have shown that Hgf or c-Met KO embryos exhibit growth retardation and markedly smaller size of the placenta, and die by E14.5. Stem/progenitor cells in various tissues express c-Met and they participate in morphogenesis and tissue repair. Thus, we hypothesized that the HGF/c-Met signaling pathway is essential for the emergence, proliferation, and/or differentiation of putative stem/precursor cells of labyrinth trophoblasts at the midgestation stage.
c-Met-dependent multipotent labyrinth trophoblast progenitors establish placental exchange interface.
Specimen part
View SamplesTo identify gene expression changes associated with Crtc1 deficiency, we performed genome-wide transcriptome profile analyses by using mouse cDNA microarrays in the cortex of Crtc1/ and WT female mice
Involvement of the agmatinergic system in the depressive-like phenotype of the Crtc1 knockout mouse model of depression.
Sex, Specimen part
View SamplesReversible protein acetylation provides a central mechanism for controlling gene expression and cellular signaling events. It is governed by the antagonistic commitment of two enzymes families: the histone acetyltransferases (HATs) and the histone deacetylases (HDACs). HDAC4, like its class IIa counterparts, is a potent transcriptional repressor through interactions with tissue-specific transcription factors via its N-terminal domain. Whilst the lysine deacetylase activity of the class IIa HDACs is much less potent than that of the class I enzymes, HDAC4 has been reported to influence protein deacetylation through its interaction with HDAC3.
HDAC4 does not act as a protein deacetylase in the postnatal murine brain in vivo.
Sex, Specimen part
View SamplesPelizaeus-Merzbacher disease (PMD) is a severe hypomyelinating disease, characterized by ataxia, intellectual disability, epilepsy and premature death. In the majority of cases, PMD is caused by duplication of PLP1 that is expressed in myelinating oligodendrocytes. Despite detailed knowledge of PLP1, there is presently no curative therapy for PMD. We used a Plp1 transgenic PMD mouse model to test the therapeutic effect of Lonaprisan, an antagonist of the nuclear progesterone receptor, in lowering Plp1 mRNA overexpression. We applied placebo-controlled Lonaprisan therapy to PMD mice for 10 weeks and performed the grid slip analysis to assess the clinical phenotype. Additionally, mRNA expression and protein accumulation as well as histological analysis of the central nervous system were performed. While Plp1 mRNA levels are increased about 1.8-fold in PMD mice compared to wildtype controls, daily Lonaprisan treatment reduced overexpression at the RNA level up to 1.5-fold, which was sufficient to significantly improve a poor motor phenotype. Electron microscopy confirmed a 25% increase in the number of myelinated axons in the corticospinal tract when compared to untreated PMD mice. Microarray analysis revealed the upregulation of pro-apoptotic genes in PMD mice that could be partially rescued by Lonaprisan treatment, which also reduced microgliosis, astrogliosis, and lymphocyte infiltration.
Progesterone antagonist therapy in a Pelizaeus-Merzbacher mouse model.
Sex, Age, Specimen part
View SamplesHuntingtons disease (HD) is a neurodegenerative disorder that is associated with the deposition of proteinaceous aggregates in the brains of HD patients and mouse models. Previous studies have suggested that wide-scale disruption of protein homeostasis occurs in protein folding diseases. Protein homeostasis can be maintained by activation of the heat shock response (HSR) via the transcription factor heat shock factor 1 (HSF1), the pharmacological activation of which can be achieved by Hsp90 inhibition and has been demonstrated to be beneficial in cell and invertebrate models of HD. Whether the HSR is functional in HD and whether its activation has therapeutic potential in mammalian HD models is currently unknown. To address these issues, we used a novel, brain penetrant Hsp90 inhibitor to activate the HSR in brain after systemic administration. Microarrays, quantitative PCR and western blotting showed that the HSR becomes impaired with disease progression in two mouse models of HD and that this originates at the level of transcription.
Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease.
Sex, Age, Specimen part, Treatment
View SamplesSchwann cell maturation is tightly controlled by a set of transcriptional regulators. We have deleted the zinc-finger transcription factor Sip1 specifically from immature Schwann cells and observed a dramatic developmental delay.
Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair.
Age, Specimen part
View SamplesIn mammals, expansion of adipose tissue mass induces accumulation of adipose tissue macrophages (ATMs). We isolated CD11c- (FB) and CD11c+ (FBC) perigonadal ATMs from SVCs of lean (C57BL/6J Lep +/+) and obese leptin-deficient (C57BL/6J Lep ob/ob) mice.
Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation.
Specimen part
View SamplesNlrp6-/- lamina propria Ly6C-hi monocytes in response to AOM/DSS have deficient TNF production, but increased production of other pro-inflammatory cytokines as compared to WT
NLRP6 function in inflammatory monocytes reduces susceptibility to chemically induced intestinal injury.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Reverse engineering a hierarchical regulatory network downstream of oncogenic KRAS.
Cell line, Treatment
View SamplesRAS mutations are highly relevant for progression and therapy response of human tumours, but the genetic network that ultimately executes the oncogenic effects is poorly understood. Here we used a reverse-engineering approach in an ovarian cancer model to reconstruct KRAS oncogene-dependent cytoplasmic and transcriptional networks from perturbation experiments based on gene silencing and pathway inhibitor treatments. We measured mRNA and protein levels in manipulated cells by microarray, RT-PCR and Western Blot analysis, respectively. The reconstructed model revealed complex interactions among the transcriptional and cytoplasmic components, some of which were confirmed by double pertubation experiments. Interestingly, the transcription factors decomposed into two hierarchically arranged groups. To validate the model predictions we analysed growth parameters and transcriptional deregulation in the KRAS-transformed epithelial cells. As predicted by the model, we found two functional groups among the selected transcription factors. The experiments thus confirmed the predicted hierarchical transcription factor regulation and showed that the hierarchy manifests itself in downstream gene expression patterns and phenotype.
Reverse engineering a hierarchical regulatory network downstream of oncogenic KRAS.
Cell line, Treatment
View Samples