We describe a function of focal adhesion kinase (FAK) in driving anti-tumor immune evasion. The kinase activity of nuclear-targeted FAK in squamous cancer cells drives exhaustion of CD8+ T-cells and recruitment of regulatory T-cells by transcriptionally regulating chemokine/cytokine and ligand-receptor networks, including transcription of Ccl5 that is crucial. These changes inhibit antigen-primed cytotoxic CD8+ T-cell activity, permitting growth of FAK-expressing tumors.
Nuclear FAK controls chemokine transcription, Tregs, and evasion of anti-tumor immunity.
Specimen part
View SamplesThe effects of mercury (HgCl2) on barley (Hordeum vulgare L.) growth, physiological traits and gene expression profiles were studied. The shoot to root ratio was decreased in the two levels of HgCl2 (500 and 1000 M) assayed, which was related primarily with decreases in shoot dry weight. Moreover stomatal conductance was limited and leaf carbon isotope discrimination decreased. Therefore water uptake limitations seem to be an important component of barley responses to HgCl2. Evidences for decreased stomatal conductance and water uptake limitations were further confirmed by the over expression of ABA related transcripts and down regulation of an aquaporin in roots. Root dry weight was only affected at 1000 M HgCl2 and root browning was observed, while several transcripts for lignin biosynthesis were up regulated in HgCl2. Microarray analysis further revealed that growth inhibition in HgCl2 was related to increased expression of genes participating in ethylene biosynthesis and down regulation of several genes participating in DNA synthesis, chromatin structure and cell division, cell wall degradation and modification, oxidative pentose phosphate cycle and nitrogen metabolism pathway. Genes involved in detoxification and defence mechanisms were up regulated including several cytochrome P450s, glucosyltransferases and glutathione-s-transferases and amino acid metabolism participatory genes. It is concluded that barley plants survive in the presence of HgCl2 through several mechanisms that include water uptake limitations, shoot and root growth regulation, increased expression of genes involved in the biosynthesis of several plant protection secondary metabolites and finally through detoxification.
Molecular and physiological mechanisms associated with root exposure to mercury in barley.
Specimen part
View SamplesTacrolimus and Sirolimus are commonly used to maintain immunosuppression in kidney transplantation. However, their effects on immune cells and allograft molecular profiles have not been elucidated.
Cellular and molecular immune profiles in renal transplant recipients after conversion from tacrolimus to sirolimus.
Specimen part, Treatment
View SamplesWe wanted to understand the consequences of GSK126-mediated Ezh2 inhibition in an orthotopic model of Kras-driven non-small cell lung cancer (NSCLC). We injected the NSCLC cells with above-mentioned genotype into Nude mice and treated them with GSK126 50mg/kg (daily) or vehicle. As additional control for Ezh2 specificity we treated one tumor with doxycycline that induces shRNA-mediated Ezh2 protein downregulation in those cells. Purified tumour cells were obtained by dissection and FACS sorting based of GFP expression. This experiment contributes the genome-wide response of NSCLC cells to Ezh2 inhibition in vivo. Overall design: We generated mRNA profiles of tumor cells tail vein injected into the lungs of Nude mice by deep sequencing. After FACS purification, RNA extraction and Bioanalyzer analysis, we processed only samples with high quality cellular and RNA profiles. Overall, we compared 10-day GSK126 treated cells (n=4) and up to 30 days GSK126 treated cells (n=3) to Captisol-treated samples (vehicle, n=2), using Illumina Hiseq2000. FACS sorted cells from individual animals were obtained by GFP expression. For H3K27ac and H2AK5ac profiling, we used KP primary tumors generated by injection of NSCLC into the tail vein of nude mice. Mice were sacrificed on the onset of shortness of breath and tissues were resuspended in ChIP lysis buffer.
Ezh2 inhibition in Kras-driven lung cancer amplifies inflammation and associated vulnerabilities.
No sample metadata fields
View SamplesLactoferrin is a highly multifunctional protein. Indeed, it is involved in many physiological functions, including regulation of iron absorption and immune responses.
A nutritional supplement containing lactoferrin stimulates the immune system, extends lifespan, and reduces amyloid <i>β</i> peptide toxicity in <i>Caenorhabditis elegans</i>.
No sample metadata fields
View SamplesNote: non-normalized values and associated raw data cannot be located by the submitter
Maternal nutrition induces pervasive gene expression changes but no detectable DNA methylation differences in the liver of adult offspring.
Sex, Specimen part
View SamplesThe aim of this study is to characterize transcriptional changes induced by maternal diet in several adult tissues and to test whether differences in DNA methylation or microRNA expression could explain these changes.
Maternal nutrition induces pervasive gene expression changes but no detectable DNA methylation differences in the liver of adult offspring.
Sex, Specimen part
View SamplesThe aim of this study is to characterize transcriptional changes induced by maternal diet in several adult tissues and to test whether differences in DNA methylation or microRNA expression could explain these changes.
Maternal nutrition induces pervasive gene expression changes but no detectable DNA methylation differences in the liver of adult offspring.
Sex, Specimen part
View SamplesThe aim of this study is to characterize transcriptional changes induced by maternal diet in several adult tissues and to test whether differences in DNA methylation or microRNA expression could explain these changes.
Maternal nutrition induces pervasive gene expression changes but no detectable DNA methylation differences in the liver of adult offspring.
Sex, Specimen part
View SamplesThe aim of this study is to characterize transcriptional changes induced by maternal diet in several adult tissues and to test whether differences in DNA methylation or microRNA expression could explain these changes.
Maternal nutrition induces pervasive gene expression changes but no detectable DNA methylation differences in the liver of adult offspring.
Sex, Specimen part
View Samples