To understand the transcriptional program by which GR regulates skin development, we performed a microarray analysis using the skin of E18.5 GR-/- and GR+/+ mouse embryos.
Glucocorticoid receptor regulates overlapping and differential gene subsets in developing and adult skin.
Specimen part
View SamplesmiR-17 from the miR-17-92 cluster regulate activation-induced cell death in T cells and modulate inducible regulatory T cell differentiation.
Molecular dissection of the miR-17-92 cluster's critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation.
Specimen part
View SamplesA number of key regulators of mouse embryonic stem (ES) cell identity, including the transcription factor Nanog, show strong expression fluctuations at the single cell level. The molecular basis for these fluctuations is unknown. Here we used a genetic complementation strategy to investigate expression changes during transient periods of Nanog downregulation. Employing an integrated approach, that includes high-throughput single cell transcriptional profiling and mathematical modelling, we found that early molecular changes subsequent to Nanog loss are stochastic and reversible. However, analysis also revealed that Nanog loss severely compromises the self-sustaining feedback structure of the ES cell regulatory network. Consequently, these nascent changes soon become consolidated to committed fate decisions in the prolonged absence of Nanog. Consistent with this, we found that exogenous regulation of Nanog-dependent feedback control mechanisms produced more a homogeneous ES cell population. Taken together our results indicate that Nanog-dependent feedback loops play a role in controlling both ES cell fate decisions and population variability.
Nanog-dependent feedback loops regulate murine embryonic stem cell heterogeneity.
Specimen part
View SamplesUsing EphB2 or the ISC marker Lgr5, we have FACS-purified and profiled intestinal stem cells (ISCs), crypt proliferative progenitors and late transient amplifying cells to define a gene expression program specific for normal ISCs.
The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
1q gain and CDT2 overexpression underlie an aggressive and highly proliferative form of Ewing sarcoma.
Sex, Age, Specimen part, Disease, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation.
Specimen part, Disease, Disease stage, Treatment, Subject
View SamplesThe survival of isolated metastatic cells and expansion into macroscopic tumour has been recognized as a limiting step for metastasis formation in several cancer types yet the determinants of this process remain largely uncharacterized. In colorectal cancer (CRC), we identify a transcriptional programme in tumour-associated stromal cells, which is intimately linked to a high risk of developing recurrent disease after therapy. A large proportion of CRCs display mutational inactivation of the TGF-beta pathway but paradoxically they are characterized by high TGF-beta production. In these tumours, TGF-beta instructs a transcriptional programme in stromal cells, which confers a high risk of developing metastatic disease.
Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation.
Specimen part, Disease, Disease stage, Subject
View SamplesThe survival of isolated metastatic cells and expansion into macroscopic tumour has been recognized as a limiting step for metastasis formation in several cancer types yet the determinants of this process remain largely uncharacterized. In colorectal cancer (CRC), we identify a transcriptional programme in tumour-associated stromal cells, which is intimately linked to a high risk of developing recurrent disease after therapy. A large proportion of CRCs display mutational inactivation of the TGF-beta pathway but paradoxically they are characterized by high TGF-beta production. In these tumours, TGF-beta instructs a transcriptional programme in stromal cells, which confers a high risk of developing metastatic disease.
Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation.
Disease, Disease stage, Subject
View SamplesThe 1q gain is related to poor survival, and to a profile of cell cycle deregulation in Ewing's Sarcoma (ES). Tumor samples with 1q gain overexpress the gene DTL.
1q gain and CDT2 overexpression underlie an aggressive and highly proliferative form of Ewing sarcoma.
Disease, Cell line
View SamplesThe survival of isolated metastatic cells and expansion into macroscopic tumour has been recognized as a limiting step for metastasis formation in several cancer types yet the determinants of this process remain largely uncharacterized. In colorectal cancer (CRC), we identify a transcriptional programme in tumour-associated stromal cells, which is intimately linked to a high risk of developing recurrent disease after therapy. A large proportion of CRCs display mutational inactivation of the TGF-beta pathway but paradoxically they are characterized by high TGF-beta production. In these tumours, TGF-beta instructs a transcriptional programme in stromal cells, which confers a high risk of developing metastatic disease.
Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation.
Specimen part, Treatment
View Samples