Background: Differential gene expression specifies the highly diverse cell types that constitute the nervous system. With its sequenced genome and simple, well-defined neuroanatomy, the nematode C. elegans is a useful model system in which to correlate gene expression with neuron identity. The UNC-4 transcription factor is expressed in thirteen embryonic motor neurons where it specifies axonal morphology and synaptic function. These cells can be marked with an unc-4::GFP reporter transgene. Here we describe a powerful strategy, Micro-Array Profiling of C. elegans cells (MAPCeL), and confirm that this approach provides a comprehensive gene expression profile of unc-4::GFP motor neurons in vivo. Results: Fluorescence Activated Cell Sorting (FACS) was used to isolate unc-4::GFP neurons from primary cultures of C. elegans embryonic cells. Microarray experiments detected 6,217 unique transcripts of which ~1,000 are enriched in unc-4::GFP neurons relative to the average nematode embryonic cell. The reliability of these data was validated by the detection of known cell-specific transcripts and by expression in UNC-4 motor neurons of GFP reporters derived from the enriched data set. In addition to genes involved in neurotransmitter packaging and release, the microarray data include transcripts for receptors to a remarkably wide variety of signaling molecules. The added presence of a robust array of G-protein pathway components is indicative of complex and highly integrated mechanisms for modulating motor neuron activity. Over half of the enriched genes (537) have human homologs, a finding that could reflect substantial overlap with the gene expression repertoire of mammalian motor neurons.
A gene expression fingerprint of C. elegans embryonic motor neurons.
No sample metadata fields
View SamplesBortezomib-induced resistant MCL cell lines (HBL2 BR and JEKO BR) were generated by continuous cultured of corresponding parental cell lines (HBL2 PT and JEKO PT) with increasing bortezomib concentrations
Bortezomib resistance in mantle cell lymphoma is associated with plasmacytic differentiation.
Specimen part, Cell line
View SamplesUsing our computational method SynGeNet to evaluate genomic and transcriptomic data characterizing four major genomic subtypes of melanoma, we selected the top ranked drug combination for BRAF-mutation melanoma for subsequent validaiton. Here we present drug-induced gene expression data from the BRAF-mutant A375 melanoma cell line in response to four treatment conditions: vehicle control (DMSO), vemurafenib alone, tretinoin (ATRA) alone and vemurafenib+tretinoin combination. Overall design: Gene expression profiles of A375 melanoma cells were generated by RNAseq (Illumina HiSeq 4000) under the following treatment conditions: vehicle control (DMSO), vemurafenib, tretinoin and vemurafenib + tretinoin combination.
Synergy from gene expression and network mining (SynGeNet) method predicts synergistic drug combinations for diverse melanoma genomic subtypes.
Specimen part, Subject
View SamplesIn Caenorhabditis elegans, VA and VB motor neurons arise as lineal sisters but synapse with different interneurons to regulate locomotion. VA-specific inputs are defined by the UNC-4 homeoprotein and its transcriptional corepressor, UNC-37/Groucho, which function in the VAs to block the creation of chemical synapses and gap junctions with interneurons normally reserved for VBs. To reveal downstream genes that control this choice, we have employed a cell-specific microarray strategy that has now identified unc-4-regulated transcripts. One of these genes, ceh-12, a member of the HB9 family of homeoproteins, is normally restricted to VBs. We show that expression of CEH-12/HB9 in VA motor neurons in unc-4 mutants imposes VB-type inputs. Thus, this work reveals a developmental switch in which motor neuron input is defined by differential expression of transcription factors that select alternative presynaptic partners. The conservation of UNC-4, HB9, and Groucho expression in the vertebrate motor circuit argues that similar mechanisms may regulate synaptic specificity in the spinal cord.
UNC-4 represses CEH-12/HB9 to specify synaptic inputs to VA motor neurons in C. elegans.
Specimen part
View SamplesEvaluation of differential expression between CLL patients in a chemoimmunotherapy trial with age-matched controls
LEF-1 is a prosurvival factor in chronic lymphocytic leukemia and is expressed in the preleukemic state of monoclonal B-cell lymphocytosis.
Specimen part, Disease, Disease stage
View SamplesRadiation lung injury is characterized by early inflammation and late fibrosis. The causes underlying the chronic, progressive nature of radiation injury are poorly understood. Here, we report that the gene expression of irradiated lung tissue correlates with that observed in the lungs in aged animals. We demonstrate that NOX4 expression and superoxide elaboration is increased in irradiated lungs and pneumocytes in a dose dependent fashion.
Role of type II pneumocyte senescence in radiation-induced lung fibrosis.
Sex, Age, Specimen part, Treatment, Time
View SamplesResistance to proteasome inhibitors (PIs) is a ubiquitous clinical concern in multiple myeloma (MM). We proposed that signaling-level responses after PI would reveal new means to enhance efficacy. Unbiased phosphoproteomics after the PI carfilzomib surprisingly demonstrated the most prominent phosphorylation changes on spliceosome components. Spliceosome modulation was invisible to RNA or protein abundance alone. Transcriptome analysis demonstrated broad-scale intron retention suggestive of PI-specific splicing interference. Direct spliceosome inhibition synergized with carfilzomib and showed potent anti-myeloma activity. Functional genomics and exome sequencing further supported the spliceosome as a specific vulnerabilityin myeloma. Our results propose splicing interference as an unrecognized modality of PI mechanism, reveal additional modes of spliceosome modulation, and suggest spliceosome targeting as a promising therapeutic strategy in myeloma. Overall design: We examine 1) gene expression of MM cells in response to PI and 2)alternative splicing in response to PI and comparator chemotherapeutic compound. We further investigate splice factor mechanism in MM cells, by examining alternative splicing in MM with overexpression of wild type and mutant splice factor, SRSF1
Proteasome inhibitor-induced modulation reveals the spliceosome as a specific therapeutic vulnerability in multiple myeloma.
Cell line, Subject, Compound, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Enhancer variants reveal a conserved transcription factor network governed by PU.1 during osteoclast differentiation.
Specimen part
View SamplesSimilar temporal expression kinetics of transcription factors in human and mouse osteoclast differentiation evaluated by microarray
Enhancer variants reveal a conserved transcription factor network governed by PU.1 during osteoclast differentiation.
Specimen part
View SamplesEndoplasmic reticulum-associated degradation (ERAD) represents a principle quality control (QC) mechanism to clear misfolded proteins in the ER; however, its physiological significance and the nature of endogenous ERAD substrates remain largely unknown. Here we discover that IRE1alpha, the sensor of unfolded protein response (UPR), is a bona fide substrate of the Sel1L-Hrd1 ERAD complex. Mechanistically, ERAD-mediated IRE1alpha degradation occurs in a Bip-dependent manner under basal conditions and is attenuated in response to ER stress. Both intramembrane hydrophilic residues of IRE1alpha and lectin protein OS9 are required for IRE1alpha degradation. ERAD deficiency causes IRE1alpha protein stabilization, accumulation and mild activation both in vitro and in vivo, leading to cellular hypersensitivity to ER stress and inflammation. Furthermore, though enterocyte-specific Sel1L-knockout mice (Sel1LIEC) are viable and appear normal, they are more susceptible to experimental colitis in an IRE1alpha-dependent but CHOP-independent manner. Collectively, these results demonstrate that Sel1L-Hrd1 ERAD serves a distinct, essential function in restraint of IRE1alpha signaling in vivo by managing its protein turnover.
IRE1α is an endogenous substrate of endoplasmic-reticulum-associated degradation.
Sex, Age, Specimen part
View Samples