Epigenetic changes are crucial for the generation of immunological memory1-4. Failure to generate or maintain these changes will result in poor memory responses. Similarly, augmenting or stabilizing the correct epigenetic states offers a potential method of enhancing immune memory. Yet the transcription factors that regulate these processes are poorly defined, as are the chromatin modifying complexes they recruit and the chromatin modifications they control. Using pathogen infection models and three different mouse models, including a new conditional allele, we find that the widely expressed transcription factor Oct15, and its cofactor OCA-B6,7, are selectively required the in vivo generation of functional CD4 memory. In vitro, both proteins are also required to maintain a poised state at the Il2 target locus in resting but previously stimulated CD4 T cells, and to generate robust Il2 expression upon restimulation. OCA-B is also required for the robust re-expression of other known targets including Il17a, and Ifng. We identify an underlying mechanism involving OCA-B recruitment of the histone lysine demethylase Jmjd1a8 to targets such as Il2 and Ifng. The findings pinpoint Oct1 and OCA-B as unanticipated mediators of CD4 T cell memory. Overall design: Examination of 4 different conditions in 2 genotypes
Oct1 and OCA-B are selectively required for CD4 memory T cell function.
No sample metadata fields
View SamplesIndividual genetic variation affects gene expression and cell phenotype by acting within complex molecular circuits, but this relationship is still largely unknown. Here, we combine genomic and meso-scale profiling with novel computational methods to detect genetic variants that affect the responsiveness of gene expression to stimulus (responsiveness QTLs) and position them in circuit diagrams. We apply this approach to study individual variation in transcriptional responsiveness to three different pathogen components in the model response of primary bone marrow dendritic cells (DCs) from recombinant inbred mice strains. We show that reQTLs are common both in cis (affecting a single target gene) and in trans (pleiotropically affecting co-regulated gene modules) and are specific to some stimuli but not others. Leveraging the stimulus-specific activity of reQTLs and the differential responsiveness of their associated targets, we show how to position reQTLs within the context of known pathways in this regulatory circuit. For example, we find that a pleiotropic trans-acting genetic factor in chr1:129-165Mb affects the responsiveness of 35 anti-viral genes only during an anti-viral like stimulus. Using RNAi we uncover RGS16 the likely causal gene in this interval, and an activator of the antiviral response. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in other complex circuits in primary mammalian cells.
Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli.
Age, Specimen part
View SamplesHuman immunity relies on the coordinated responses of many cellular subsets and functional states. Inter-individual variations in cellular composition and communication could thus potentially alter host protection. Here, we explore this hypothesis by applying single-cell RNA-Seq to examine viral responses among the dendritic cells (DCs) of three elite controllers (ECs) of HIV-1 infection. We discover a highly functional antiviral DC state in ECs whose fractional abundance after in vitro exposure to HIV-1 correlates with higher CD4+ T cell counts and lower HIV-1 viral loads, and that effectively primes polyfunctional T cell responses in vitro. We identify and validate select immunomodulators that increase the fractional abundance of this state in primary peripheral blood mononuclear cells (PBMCs) from healthy individuals in vitro. Overall design: Single-cell RNA-seq profiling of HIV-1-exposed cDCs and media controls from 3 elite controllers used to identify reproducible gene expression programs associated with cell-intrinsic HIV-1 immune recognition.
A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers.
Specimen part, Subject
View SamplesWe present a detailed single cell time course of the macrophage response to Salmonella infection. By combining phenotypic fluorescent labels with single cell expression analysis we are able to identify gene modules associated with bacterial exposure and bacterial infection. We also identify other genetic clusters that are expressed heterogenously, ananlyzing both their regulation and their impact on infection Overall design: Analysis of 192 single cells across 4 time points after Salmonella exposure (MOI 1:1) with one of three different fluorescent labels indicating whether a given cell contained no intracellular bacteria (non-fluorescent), contained dead intracellular bacteria (only pHrodo positive), or contained live intracellular bacteria (pHrodo and GFP positive)
Pathogen Cell-to-Cell Variability Drives Heterogeneity in Host Immune Responses.
No sample metadata fields
View SamplesWe present a detailed single cell analysis of the macrophage response to LPS from Salmonella enterica. By combining single cell transcriptional analysis, fluorescently labeled, LPS-coated beads, and cytometry we are able to distinguish the responses of macrophages that have internalized LPS-coated beads and those that have not. Overall design: Analysis of 96 single macrophages that were either: left untreated, were exposed to but did not internalize uncoated beads, were exposed to and internalized uncoated beads, were exposed to but did not internalize LPS-coated beads, or were exposed to and did internalize LPS-coated beads.
Pathogen Cell-to-Cell Variability Drives Heterogeneity in Host Immune Responses.
No sample metadata fields
View SamplesA time course of the macrophage response to Salmonella exposure analyzing the effects of input cell number as a control for single cell studies Overall design: Mouse macrophages were exposed to Salmonella enterica for different lengths of time. Libraries were constructed using either approximately 500,00 macrophages lysed directly on a tissue culture dish (bulk) or using only 150 cells isolated using FACS (sorted). All libraries were constructed in duplicate (bulk) or triplicate (sorted). All replicates are biological replicates
Pathogen Cell-to-Cell Variability Drives Heterogeneity in Host Immune Responses.
No sample metadata fields
View SamplesHuman immunity relies on the coordinated responses of many cellular subsets and functional states. Inter-individual variations in cellular composition and communication could thus potentially alter host protection. Here, we explore this hypothesis by applying single-cell RNA-Seq to examine viral responses among the dendritic cells (DCs) of three elite controllers (ECs) of HIV-1 infection. We discover a highly functional antiviral DC state in ECs whose fractional abundance after in vitro exposure to HIV-1 correlates with higher CD4+ T cell counts and lower HIV-1 viral loads, and that effectively primes polyfunctional T cell responses in vitro. We identify and validate select immunomodulators that increase the fractional abundance of this state in primary peripheral blood mononuclear cells (PBMCs) from healthy individuals in vitro. Overall design: Bulk RNA-seq profiling of sorted cDC subsets associated with cell-intrinsic HIV-1 immune recognition.
A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers.
Subject, Time
View SamplesHuman immunity relies on the coordinated responses of many cellular subsets and functional states. Inter-individual variations in cellular composition and communication could thus potentially alter host protection. Here, we explore this hypothesis by applying single-cell RNA-Seq to examine viral responses among the dendritic cells (DCs) of three elite controllers (ECs) of HIV-1 infection. We discover a highly functional antiviral DC state in ECs whose fractional abundance after in vitro exposure to HIV-1 correlates with higher CD4+ T cell counts and lower HIV-1 viral loads, and that effectively primes polyfunctional T cell responses in vitro. We identify and validate select immunomodulators that increase the fractional abundance of this state in primary peripheral blood mononuclear cells (PBMCs) from healthy individuals in vitro. Overall design: Bulk RNA-seq profiling of TLR-perturbed cDCs and controls from a healthy donor for comparison with gene expression programs associated with cell-intrinsic HIV-1 immune recognition.
A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers.
Subject, Time
View SamplesFor each strain two time courses for mRNA abundance: Oxidative and MMS and two time courses for decay: reference decay and following oxidative stress
Transcriptome kinetics is governed by a genome-wide coupling of mRNA production and degradation: a role for RNA Pol II.
No sample metadata fields
View SamplesWe introduce a microfluidic platform that enables off-chip single-cell RNA-seq after multigenerationa lineage tracking under controlled culture conditions. Overall design: Examination of lineage and cell cycle dependent transcriptional profiles in two cell types
A microfluidic platform enabling single-cell RNA-seq of multigenerational lineages.
Specimen part, Cell line, Subject
View Samples