PURPOSE: To examine if a parental high fat diet (HFD) influences metabolic health in two generations of offspring, and alters the germ cell (GC) transcriptome. PROCEDURE: GC-eGFP Sprague Dawley rats were weaned onto HFD (45% fat) or Control Diet (CD; 10% fat). After metabolic testing, founders (F0) were bred with controls, establishing the F1 generation. Germ cells from F0 males were isolated and their RNA sequenced. F1 rats were bred with control rats at 17 weeks to generate F2 offspring. FINDINGS: HFD resulted in 9.7% and 14.7% increased weight in male and female F0 respectively. F1 offspring of HFD mothers were heavier than controls. F1 daughters of HFD-fed males were also heavier. F2 male offspring derived from HFD-fed maternal grandfathers were 7.2% heavier, and exhibited increases of 31% in adiposity, 97% in plasma leptin and 300% in luteinising hormone to testosterone ratio. HFD exposure did not alter the F0 GC transcriptome. CONTROLS: Matched CD was consumed by all animals not consuming the HFD. Animals were compared to a parallel cohort of CD rats. CONCLUSIONS: HFD consumption by maternal grandfathers results in a disrupted metabolic phenotype in grandsons. This effect is not mediated by alterations to the GC transcriptome. Overall design: Male rats high fat diet vs. control diet. 4 replicates per condition. SmallRNA seq and mRNAseq for each replicate and condition
High-fat diet disrupts metabolism in two generations of rats in a parent-of-origin specific manner.
No sample metadata fields
View SamplesThe overall goal of this project is to investigate the contribution of the inferior alveolar nerve (IAN) towards cellular mechanisms required for regeneration of the murine incisor. Here, we conducted gene expression profiling of adult murine incisor dental mesenchyme tissue following two weeks after unilateral resection of the IAN from both the denerved and contralateral incisor of five wild-type mice.
Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor.
Sex, Specimen part
View SamplesSince normal brain function depends upon continuous oxygen delivery and short periods of hypoxia can precondition against subsequent ischemia, this study examined the effects of brief hypoxia on the whole genome transcriptional response in adult mouse brain.
Regional genome transcriptional response of adult mouse brain to hypoxia.
Specimen part, Treatment, Time
View SamplesCaenorhabditis elegans is a major eukaryotic experimental system employed to unravel a broad range of cellular and biological processes. Despite the many advantages of C. elegans, biochemical approaches to study tissue-specific gene expression in postembryonic stages are challenging. Here we report a novel experimental approach that enables the efficient determination of tissue-enriched transcriptomes by rapidly releasing nuclei from major tissues of postembryonic animals followed by fluorescence-activated nuclei sorting (FANS). Furthermore, we developed and applied a deep sequencing method, named 3'end-seq, which is designed to examine gene expression and identify 3' ends of transcripts using a small quantity of input RNA. In agreement with intestinal specific gene expression, promoter elements of highly expressed genes are enriched for GATA elements and their functional properties are associated with processes that are characteristic for the intestine. In addition, we systematically mapped pre-mRNA cleavage and polyadenylation sites, or polyA sites, including >3,000 sites that have previously not been identified. The analysis of nuclear mRNA revealed widespread alternative polyA site use in intestinally expressed genes. We describe several novel approaches that will be of significance to the analysis of tissue specific gene expression using small quantity RNA samples from C. elegans and beyond. Overall design: 3'end-seq of transcriptomes for input and sorted nuclei
Analysis of C. elegans intestinal gene expression and polyadenylation by fluorescence-activated nuclei sorting and 3'-end-seq.
Specimen part, Cell line, Subject
View SamplesChronic viral infections are characterized by a state of CD8 T cell dysfunction termed exhaustion. A better understanding of the mechanisms that regulate CD8 T cell responses during chronic infection is required to improve immunotherapies that restore function in exhausted CD8 T cells. Here we identify a novel population of virus-specific CD8 T cells with a T follicular helper (Tfh)-like signature in mice chronically infected with lymphocytic choriomeningitis virus (LCMV). These Tfh-like CD8 T cells expressed the programmed cell death-1 (PD-1) inhibitory receptor but at the same time also expressed co-stimulatory molecules and had a gene signature that was related to CD8 T cell memory precursor cells and hematopoietic stem cells (HSC). These Tfh-like CD8 T cells acted as stem cells during chronic infection undergoing self-renewal and also differentiating into the terminally exhausted CD8 T cells that were present in both lymphoid and non-lymphoid tissues. The Tfh-like CD8 T cells were found only in lymphoid tissues and resided predominantly in the T cell zones along with nave CD8 T cells. Interestingly, the proliferative burst after PD-1 blockade came almost exclusively from this Tfh-like CD8 T cell subset. Importantly, the transcription factor TCF1 played a cell intrinsic and essential role in the generation of Tfh-like CD8 T cells. Taken together, our study identifies Tfh-like CD8 T cells as the critical subset for maintaining the pool of virus-specific CD8 T cells during chronic infection and as the cells that proliferate after PD-1 blockade. These findings provide a better understanding of T cell exhaustion and have implications towards optimizing PD-1 directed immunotherapy.
Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy.
Sex, Specimen part, Time
View SamplesTfh and B cells were cultured together with or without Tfr cells. After 4 days Tfh and B cells were sorted and prepared for 3'' targeted RNA-seq. Overall design: Examination of transcriptional changes upon suppression of Tfh and B cells.
Suppression by T<sub>FR</sub> cells leads to durable and selective inhibition of B cell effector function.
Specimen part, Cell line, Subject
View SamplesThe aim of this experiment was to investigate differential gene expression in splenocytes stimulated with BCG from nave and BCG vaccinated mice. The differences between nave and BCG vaccinated mice might indicate the mechanisms by which BCG vaccination confers an enhanced ability of splenocytes from BCG vaccinated mice to inhibit growth of BCG in splenocyte cultures as compared with splenocytes from naive animals.
Mycobacterial growth inhibition in murine splenocytes as a surrogate for protection against Mycobacterium tuberculosis (M. tb).
Sex, Age, Specimen part
View SamplesTfh and B cells were cultured together with or without Tfr cells and IL-21. After 4 days Tfh and B cells were sorted and prepared for 3'' targeted RNA-seq. Overall design: Examination of transcriptional changes upon IL-21 rescue of B cell suppression
Suppression by T<sub>FR</sub> cells leads to durable and selective inhibition of B cell effector function.
Specimen part, Cell line, Subject
View SamplesTo dissect the impact of nuclear and extranuclear mutant htt on the initiation and progression of disease, we generated a series of transgenic mouse lines in which nuclear localization (NLS) or nuclear export sequences (NES) have been placed N-terminal to the htt exon 1 protein carrying 144 glutamines. Our data indicate that the exon 1 mutant protein is present in the nucleus as part of an oligomeric or aggregation complex. Increasing the concentration of the mutant transprotein in the nucleus is sufficient for, and dramatically accelerates the onset and progression of behavioral phenotypes. Furthermore, nuclear exon 1 mutant protein is sufficient to induce cytoplasmic neurodegeneration and transcriptional dysregulation. However, our data suggests that cytoplasmic mutant exon 1 htt, if present, contributes to disease progression.
Contribution of nuclear and extranuclear polyQ to neurological phenotypes in mouse models of Huntington's disease.
No sample metadata fields
View SamplesTo unravel the molecular mechanisms mediating the effects of androgens on spermatogenesis, testicular gene expression was compared in mice with a Sertoli cell-selective androgen receptor knockout (SCARKO) and littermate controls on postnatal d 10. At this age testicular cell composition is still comparable in SCARKOs and controls. Microarray analysis identified 692 genes with significant differences in expression. A more than 2-fold up- or downregulation by androgen action in Sertoli cells was observed for 28 and 6 genes respectively. The biological relevance of the strongly upregulated genes was supported by the finding that several of them were previously described to be androgen-regulated or essential for spermatogenesis. Serine protease inhibitors were overrepresented in the same subgroup suggesting a role for androgens in cell junction dynamics and tissue restructuring events during spermatogenesis. A time course experiment (d8-d20), followed by cluster analysis allowed the identification of typical expression patterns of differentially expressed testicular genes during initiation of spermatogenesis. Three genes with a pattern closely resembling that of Pem, a prototypal androgen-regulated gene in Sertoli cells, were selected for confirmation by RT-PCR and further analysis. The data confirm that the SCARKO model allows identification of novel androgen-regulated genes in the testis. This particular series represents all data from d 10. The additional expression data from the time course (d8-d20) is represented by series GSE2259 ("Testicular gene expression in SCARKO mice during prepuberty").
The effect of a sertoli cell-selective knockout of the androgen receptor on testicular gene expression in prepubertal mice.
No sample metadata fields
View Samples