Expression data from treatment of actinomycin D (2.5uM) and triptolide (500 nM) on MCF7 cells for 2, 4 and 6 hours.
Chemical genomics identifies small-molecule MCL1 repressors and BCL-xL as a predictor of MCL1 dependency.
Cell line, Compound, Time
View SamplesTo investigate whether and how expression of the oncogenic transcription factor EVI1 influences gene regulation by phorbol esters and vice versa, the human myeloid cell line U937 was transduced with an EVI1 expression vector or empty vector as a control. Cells were treated with 12-Otetradecanoylphorbol 13-acetate (TPA) or its solvent ethanol as a control. RNA was extracted and subjected to gene expression microarray analysis.
The oncogene EVI1 enhances transcriptional and biological responses of human myeloid cells to all-trans retinoic acid.
Cell line
View SamplesThe product of the ecotropic virus integration site 1 (EVI1) gene, whose overexpression is associated with a poor prognosis in myeloid leukemias and some epithelial tumors, regulates gene transcription both through direct DNA binding and through modulation of the activity of other sequence specific transcription factors. Previous results from our laboratory have shown that EVI1 influenced transcription regulation in response to the myeloid differentiation inducing agent, all-trans retinoic acid (ATRA), in a dual manner: it enhanced ATRA induced transcription of the RARb gene, but repressed the ATRA induction of the EVI1 gene itself. In the present study, we asked whether EVI1 would modulate the ATRA regulation of a larger number of genes, as well as biological responses to this agent, in human myeloid cells. U937 and HL-60 cells ectopically expressing EVI1 through retroviral transduction were subjected to microarray based gene expression analysis, and to assays measuring cellular proliferation, differentiation, and apoptosis. These experiments showed that EVI1 modulated the ATRA response of several dozens of genes, and in fact reinforced it in the vast majority of cases. A particularly strong synergy between EVI1 and ATRA was observed for GDF15, which codes for a member of the TGF-b superfamily of cytokines. In line with the gene expression results, EVI1 enhanced cell cycle arrest, differentiation, and apoptosis in response to ATRA, and knockdown of GDF15 counteracted some of these effects.
The oncogene EVI1 enhances transcriptional and biological responses of human myeloid cells to all-trans retinoic acid.
Cell line
View SamplesThe product of the ecotropic virus integration site 1 (EVI1) gene, whose overexpression is associated with a poor prognosis in myeloid leukemias and some epithelial tumors, regulates gene transcription both through direct DNA binding and through modulation of the activity of other sequence specific transcription factors. Previous results from our laboratory have shown that EVI1 influenced transcription regulation in response to the myeloid differentiation inducing agent, all-trans retinoic acid (ATRA), in a dual manner: it enhanced ATRA induced transcription of the RARb gene, but repressed the ATRA induction of the EVI1 gene itself. In the present study, we asked whether EVI1 would modulate the ATRA regulation of a larger number of genes, as well as biological responses to this agent, in human myeloid cells. U937 and HL-60 cells ectopically expressing EVI1 through retroviral transduction were subjected to microarray based gene expression analysis, and to assays measuring cellular proliferation, differentiation, and apoptosis. These experiments showed that EVI1 modulated the ATRA response of several dozens of genes, and in fact reinforced it in the vast majority of cases. A particularly strong synergy between EVI1 and ATRA was observed for GDF15, which codes for a member of the TGF-b superfamily of cytokines. In line with the gene expression results, EVI1 enhanced cell cycle arrest, differentiation, and apoptosis in response to ATRA, and knockdown of GDF15 counteracted some of these effects.
The oncogene EVI1 enhances transcriptional and biological responses of human myeloid cells to all-trans retinoic acid.
No sample metadata fields
View SamplesThe human neocortex is created from diverse progenitors that are intermixed with multiple cell types in the prenatal germinal zones. These progenitors have been difficult to profile with unbiased transcriptomics since progenitors-particularly radial glia (RG)-are rare cell types, defined by a combination of intracellular markers, position and morphology. To circumvent these problems, we developed a method called FRSCR for transcriptome profiling of individual fixed, stained, and sorted cells. After validation of FRSCR with human embryonic stem cells, we profiled primary human RG that constitute only 1% of the mid-gestation cortex. These data showed that RG could be classified into ventricle zone-enriched RG (vRG) that expressed ANXA1 and CRYAB, and outer subventricular zone-localized RG (oRG) that expressed HOPX. Our study identified the first markers and molecular profiles of vRG and oRG cells, and provides an essential step for understanding molecular networks that control the development and lineage of human neocortical progenitors. Furthermore, FRSCR allows targeted single-cell transcriptomic profiling of many tissues that currently lack live-cell markers. Overall design: 26 Llive and 19 Fixed cultured hESCs were prepared and sequenced using both FRISCR and TritonX-100 Lysis as proof of principal for FRSCR.
Fixed single-cell transcriptomic characterization of human radial glial diversity.
No sample metadata fields
View SamplesLPL co-deregulated genes after LPL specific siRNA knock-down
Lipoprotein lipase in chronic lymphocytic leukaemia - strong biomarker with lack of functional significance.
Specimen part, Treatment
View SamplesThe discovery of significant heterogeneity in the self-renewal durability of adult haematopoietic stem cells (HSCs) has challenged our understanding of the molecules involved in population maintenance throughout life. Gene expression studies in bulk populations are difficult to interpret since multiple HSC subtypes are present and HSC purity is typically less than 50% of the input cell population. Numerous groups have therefore turned to studying gene expression profiles of single HSCs, but again these studies are limited by the purity of the input fraction and an inability to directly ascribe a molecular program to a durable self-renewing HSC. Here we combine single cell functional assays with flow cytometric index sorting and single cell gene expression assays to gain the first insight into the gene expression program of HSCs that possess durable self-renewal. This approach can be used in other stem cell systems and sets the stage for linking key molecules with defined cellular functions. Overall design: single-cell RNA-Seq of haematopoietic stem cells
Combined Single-Cell Functional and Gene Expression Analysis Resolves Heterogeneity within Stem Cell Populations.
No sample metadata fields
View SamplesPurpose:
Sequential gene expression profiling during treatment for identification of predictive markers and novel therapeutic targets in chronic lymphocytic leukemia.
Treatment
View SamplesPeripheral blood was collected from 18 Parkinson's Disease (PD) patients and 12 healthy controls (Ctrls). Total RNA was isolated and hybridized onto Affymetrix Exon_ST1 arrays to find in PDs versus controls: 1) genes that are differentiallly expressed and 2) genes with differential exonic expression (alternative splicing).
SRRM2, a potential blood biomarker revealing high alternative splicing in Parkinson's disease.
Sex, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
miR-30e targets IGF2-regulated osteogenesis in bone marrow-derived mesenchymal stem cells, aortic smooth muscle cells, and ApoE-/- mice.
Specimen part, Treatment
View Samples