The identification of cell types and marker genes is critical for dissecting neural development and function, but the size and complexity of the brain has hindered the comprehensive discovery of cell types. We combined single-cell RNA-seq with anatomical brain registration to create a comprehensive map of the zebrafish habenula, a conserved forebrain hub involved in pain processing and learning. Single-cell transcriptomes of ~13000 habenular cells (>4x coverage) identified 18 neuronal types and dozens of marker genes. Registration of marker genes onto a common reference atlas created a rich resource for anatomical and functional studies and enabled the mapping of active neurons onto neuronal types following aversive stimuli. Strikingly, despite brain growth and functional maturation, cell types were retained between the larval and adult habenula. This study provides a gene expression atlas to dissect habenular development and function and offers a general framework for the comprehensive characterization of other brain regions. Overall design: gng8-GFP zebrafish heads were dissected, dissociated and FAC sorted into 96 well plates. Single cell libraries were generated in batches of 384 cells using Smart-seq2. A total of 22 gng8-GFP fish were dissected in 3 batches and 384 cells were processed from each using Smart-seq2.
Comprehensive Identification and Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq.
Specimen part, Subject
View SamplesSMART-seq2 was performed on single cells isolated from visually staged zebrafish embryos. Overall design: Samples were all sequenced in one batch. Some were generated with a 5'' UMI-tagged method, and others are full-length SMART-seq2.
Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis.
Subject
View SamplesWild-type zebrafish embryos were mechanically dissociated and profiled using Drop-seq Overall design: Drop-seq was performed on 28 groups of 20-40 visually staged, mechanically dissociated embryos. Samples were combined and sequenced in batches DS2-DS5.
Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis.
Subject
View SamplesWild-type and MZoep zebrafish embryos were mechanically dissociated and profiled using 10x Genomics pipeline. Overall design: 10x scRNA-seq was performed on visually staged, mechanically dissociated embryos. Samples were combined and sequenced in one batch.
Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis.
Subject
View SamplesFour Kcng4-cre;stop-YFP mouse retinas from two mice were dissected, dissociated and FACS sorted, and single cell RNA-seq libraries were generated for 384 single cells using Smart-seq2. Aligned bam files are generated for 383 samples as one failed to align. Overall design: Four mouse retinas (labeled 1la, 1Ra, and 2la, 2Ra respective from the two mice) were used, and 96 single cells from each were processed using Smart-seq2. Total 384 cells Smart-seq2 analysis of P17 FACS sorted retinal cells from the Kcng4-cre;stop-YFP mice (Kcng4tm1.1(cre)Jrs mice [Duan et al., Cell 158, 793-807, 2015] crossed to the cre-dependent reporter Thy1-stop-YFP Line#1 [Buffelli et al., Nature 424, 430-434, 2003])
Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics.
Specimen part, Subject
View Samples15,000 GFP+ cells were collected from two replicates of the Htr3a GFP line into RNAlater (ThermoFisher, AM7024). RNA was purified and bulk RNA-seq was performed using the Ovation RNA-seq system V2 (Nugen, 7102-32) Overall design: Bulk RNA-seq analysis of Type 5 retinal bipolar cells (2 biological replicates)
Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics.
Specimen part, Subject
View SamplesA cell supsension containing an equal mix of HEK and 3T3 cells was used in the Fluidigm C1 Overall design: Suspensions of 3T3 and HEK cells were diluted down to a concentration of 250,000 per mL and mixed 1:1, then loaded onto two medium C1 cell capture chips.
Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets.
No sample metadata fields
View SamplesUsing single-cell RNA-seq of intestinal epithelial cells we identify surprising expression of MHC class II, which participates in a novel interaction between gut-resident CD4+ T cells and epithelial stem cells, governing the balance between stem cell differentiation and renewal. Overall design: In the small intestine, a niche of accessory cell types supports the generation of mature epithelial cell types from intestinal stem cells (ISCs). It is unclear, however, if and how immune cells in the niche affect ISC fate or the balance between self-renewal and differentiation. Here, we use single-cell RNA sequencing (scRNA-seq) to identify MHC class II (MHCII) machinery enrichment in two subsets of Lgr5+ ISCs. We show that MHCII+ Lgr5+ ISCs are non-conventional antigen-presenting cells in co-cultures with CD4+ T helper (Th) cells. Stimulation of intestinal organoids with key Th cytokines affects Lgr5+ ISC renewal and differentiation in opposing ways: pro-inflammatory signals promote differentiation, while regulatory cells and cytokines reduce it. In vivo genetic perturbation of Th cells or MHCII expression on Lgr5+ ISCs impacts epithelial cell differentiation and IEC fate during infection. These interactions between Th cells and Lgr5+ ISCs, thus, orchestrate tissue-wide responses to external signals.
T Helper Cell Cytokines Modulate Intestinal Stem Cell Renewal and Differentiation.
Specimen part, Cell line, Treatment, Subject, Time
View SamplesChronic alcohol consumption can lead to alchohol-related brain damage (ARBD). Despite the well known acute effects of alcohol the mechanism responsible for chronic brain damage is largely unknown. Pathologically the major change is the loss of white matter while neuronal loss is mild and restricted to a few areas such as the prefrontal cortex. In order to improve our understanding of ARBD pathogenesis we used microarrays to explore the white matter transcriptome of alcoholics and controls.
Comorbidities, confounders, and the white matter transcriptome in chronic alcoholism.
Specimen part, Disease, Disease stage
View SamplesDamage-associated molecular pattern (DAMP) molecules S100A8 and S100A9 with well-known functions in inflammation, tumor growth and metastasis. It has been found to have promote tumor cell proliferation activity at low concentration . However, the mechanism underlying this remains unclear. In the current study, we performed genome expression profiling analysis using the Affymetrix genome wide microarray system to identify broad scale changes in gene expression associated with S100a8 or S100a9 recombinant protein stimulation in murine colon carcinoma cell line CT26.WT.
Inflammation-induced S100A8 activates Id3 and promotes colorectal tumorigenesis.
Cell line
View Samples