Induction of the Arf tumor suppressor in response to hyperproliferative stress following oncogene activation activates a p53-dependent transcriptional program that limits the expansion of incipient cancer cells. Although Arf is not expressed in most tissues of fetal or young adult mice, it is physiologically expressed in the fetal yolk sac, a tissue derived from the extraembryonic endoderm. We demonstrate that expression of the mouse p19Arf protein marks late stages of extraembryonic endoderm differentiation in cultured embryoid bodies derived from either embryonic stem cells or induced pluripotent stem cells, and that Arf inactivation specifically delays the differentiation of the extraembryonic endoderm lineage, but not the formation of other germ cell lineages from pluripotent progenitors. Arf is required for the timely induction of extraembryonic endodermal cells in response to Ras/Erk signaling and, in turn, acts through p53 to ensure extraembryonic endoderm lineage development, but not maintenance. Remarkably, a significant temporal delay in extraembryonic endoderm differentiation detected during the maturation of Arf-null embryoid bodies is rescued by enforced expression of miR-205, a micro-RNA up-regulated by p19Arf and p53. Introduction of miR-205 into Arf-null embryonic stem cells rescues defective ExEn formation and elicits a program of gene expression that controls the migration and adhesion of embryonic endodermal cells. This occurs, at least in part, through atypical regulation of genes that control the epithelial-to-mesenchymal transition in cancer cells. Our findings suggest that noncanonical and canonical roles of Arf in extraembryonic endoderm development and tumor suppression, respectively, may be conceptually linked through mechanisms that govern cell-to-cell attachment and migration.
Arf tumor suppressor and miR-205 regulate cell adhesion and formation of extraembryonic endoderm from pluripotent stem cells.
Specimen part, Treatment
View SamplesThe morphogen and mitogen, Sonic Hedgehog, activates a Gli1-dependent transcription program that drives proliferation of granule neuron progenitors (GNPs) within the external germinal layer of the postnatally developing cerebellum. Medulloblastomas with mutations activating the Sonic Hedgehog signaling pathway preferentially arise within the external germinal layer, and the tumor cells closely resemble GNPs. Atoh1/Math1, a basic helix-loop-helix transcription factor essential for GNP histogenesis, does not induce medulloblastomas when expressed in primary mouse GNPs that are explanted from the early postnatal cerebellum and transplanted back into the brains of nave mice. However, enforced expression of Atoh1 in primary GNPs enhances the oncogenicity of cells overexpressing Gli1 by almost three orders of magnitude. Unlike Gli1, Atoh1 cannot support GNP proliferation in the absence of Sonic Hedgehog signaling and does not govern expression of canonical cell cycle genes. Instead, Atoh1 maintains GNPs in a Sonic Hedgehog-responsive state by regulating genes that trigger neuronal differentiation, including many expressed in response to bone morphogenic protein-4. Therefore, by targeting multiple genes regulating the differentiation state of GNPs, Atoh1 collaborates with the pro-proliferative Gli1-dependent transcriptional program to influence medulloblastoma development.
Atoh1 inhibits neuronal differentiation and collaborates with Gli1 to generate medulloblastoma-initiating cells.
Age, Specimen part, Treatment
View SamplesMyc-driven Group 3 medulloblastoma (MB) is the most aggressive tumor among the four subgroups classified by transcriptome, genomic landscape and clinical outcomes. So far in all available mouse Group 3 models, the constitutive ectopic Myc expression was under control of LTR element or other exogenous promoters within the vectors, which were randomly inserted into the genome with multiple copies. Here we are deploying nuclease deficient CRISPR/dCas9-based transactivator that is targeted to promoter DNA sequences by specific guide RNA to force the transcriptional activation of endogenous Myc in p53-/-;cdkn2c-/- neurospheres cells. A combination of three sgRNAs together with dCas9-VP64 induced the highest expression of endogenous Myc. When the targeted cells were transplanted to the cortex of recipients, tumors arose fully recapitulate the Group 3 MB in human. This novel mouse model should significantly strengthen our understanding and treatment of the Myc-driven Group 3 medulloblastoma.
Mouse medulloblastoma driven by CRISPR activation of cellular Myc.
Specimen part
View SamplesDrugMatrix is a comprehensive rat toxicogenomics database and analysis tool developed to facilitate the integration of toxicogenomics into hazard assessment. Using the whole genome and a diverse set of compounds allows a comprehensive view of most pharmacological and toxicological questions and is applicable to other situations such as disease and development.
Genomic models of short-term exposure accurately predict long-term chemical carcinogenicity and identify putative mechanisms of action.
Sex, Specimen part, Compound, Time
View SamplesDrugMatrix is a comprehensive rat toxicogenomics database and analysis tool developed to facilitate the integration of toxicogenomics into hazard assessment. Using the whole genome and a diverse set of compounds allows a comprehensive view of most pharmacological and toxicological questions and is applicable to other situations such as disease and development.
Genomic models of short-term exposure accurately predict long-term chemical carcinogenicity and identify putative mechanisms of action.
Specimen part, Compound, Time
View SamplesDrugMatrix is a comprehensive rat toxicogenomics database and analysis tool developed to facilitate the integration of toxicogenomics into hazard assessment. Using the whole genome and a diverse set of compounds allows a comprehensive view of most pharmacological and toxicological questions and is applicable to other situations such as disease and development.
Genomic models of short-term exposure accurately predict long-term chemical carcinogenicity and identify putative mechanisms of action.
Sex, Specimen part, Compound, Time
View SamplesDrugMatrix is a comprehensive rat toxicogenomics database and analysis tool developed to facilitate the integration of toxicogenomics into hazard assessment. Using the whole genome and a diverse set of compounds allows a comprehensive view of most pharmacological and toxicological questions and is applicable to other situations such as disease and development.
Genomic models of short-term exposure accurately predict long-term chemical carcinogenicity and identify putative mechanisms of action.
Sex, Specimen part, Compound, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genomic models of short-term exposure accurately predict long-term chemical carcinogenicity and identify putative mechanisms of action.
Sex, Specimen part, Compound, Time
View SamplesDrugMatrix is a comprehensive rat toxicogenomics database and analysis tool developed to facilitate the integration of toxicogenomics into hazard assessment. Using the whole genome and a diverse set of compounds allows a comprehensive view of most pharmacological and toxicological questions and is applicable to other situations such as disease and development.
Genomic models of short-term exposure accurately predict long-term chemical carcinogenicity and identify putative mechanisms of action.
Sex, Specimen part, Compound, Time
View SamplesMice lacking p53 and one or two alleles of the cyclin D-dependent kinase inhibitor p18Ink4c are prone to medulloblastoma development. The tumor frequency is increased by exposing postnatal animals to ionizing radiation at a time when their cerebella are developing. In irradiated mice engineered to express a floxed p53 allele and a Nestin-Cre transgene, tumor development can be restricted to the brain. Analysis of these animals indicated that inactivation of one or both Ink4c alleles did not affect the time of medulloblastoma onset but increased tumor invasiveness. All such tumors exhibited complete loss of function of the Patched 1 (Ptc1) gene encoding the receptor for sonic hedgehog, and many exhibited other recurrent genetic alterations, including trisomy of chromosome 6, amplification of N-Myc, modest increases in copy number of the Ccnd1 gene encoding cyclin D1, and other complex chromosomal rearrangements. In contrast, medulloblastomas arising in Ptc1+/- mice lacking one or both Ink4c alleles retained p53 function and exhibited only limited genomic instability. Nonetheless, complete inactivation of the wild type Ptc1 allele was a universal event, and trisomy of chromosome 6 was again frequent. The enforced expression of N-Myc or cyclin D1 in primary cerebellar granule neuron precursors isolated from Ink4c-/-, p53-/- mice enabled the cells to initiate medulloblastomas when injected back into the brains of immunocompromised recipient animals. These engineered tumors exhibited gene expression profiles indistinguishable from those of medulloblastomas that arose spontaneously. These results underscore the functional interplay between a network of specific genes that recurrently contribute to medulloblastoma formation.
Genetic alterations in mouse medulloblastomas and generation of tumors de novo from primary cerebellar granule neuron precursors.
No sample metadata fields
View Samples