Our previous investigation indicated that high-virulence C. gattii (C. gattii TIMM 4097) tend to reside in the alveoli, whereas low-virulence C. gattii (C. gattii TIMM 4903) tend to be washed out from the alveoli and move into the central side of the respiratory system. To test this hypothesis, we performed microarray assay.
How histopathology can contribute to an understanding of defense mechanisms against cryptococci.
Sex, Specimen part
View SamplesWe identified RNA targets of Matrin3 using SH-SY5Y by PAR-CLIP analysis. Because Matrin3 mainly bound to intron of pre-mRNA, in order to find the effect of Matrin3 on splicing pattern and expression, we knocked down Matrin3 using SH-SY5Y cells by electroporation and extracted total RNAs from those cells. The total RNAs were subjected to whole transcripts microarray GeneChip Affymetrix Human Transcriptome array 2.0.
Matrin3 binds directly to intronic pyrimidine-rich sequences and controls alternative splicing.
Cell line, Treatment
View SamplesTongue squamous cell carcinoma (TSCC) varies in characteristics even in early stages and is mainly classified into three subtypes, which are superficial, exophytic and endophytic types, based on a macroscopic appearance of tumor growth.Of these subtypes, endophytic tumor has a poorer prognosis because of its invasive feature and higher frequency to have metastasis. To understand a molecular mechanism of endophytic subtype and identify biomarkers, we performed comprehensive microarray analysis for mRNAs from clinical biopsy sampleswhich were classified into subtypes and found overexpression of parvin-beta (PARVB) gene significantly related to endophytic type. PARVB is known to play a critical role in actin reorganization and focal adhesions. Knocking down PARVB expression in vitrocaused apparent decreases in cell migration and wound healing, implying that PARVB has a crucial role in cellular motility. Moreover, metastasis-free survival was significantly lowered in patients with higher PARVB expression. Therefore overexpression of PARVB is a candidate biomarker for endophytic tumor and metastasis and may be clinically applicable for decision making of an adjuvant therapy in TSCC.
PARVB overexpression increases cell migration capability and defines high risk for endophytic growth and metastasis in tongue squamous cell carcinoma.
Sex, Specimen part
View SamplesAngiopoietin-Tie2 sytem has been inplicated in both vascular quiescence and angiogenesis. It is unclear how these two opposing signals are regulated from the same receptor-mediated intracellular signal transduction. We have noticed that Tie2 localization upon Angiopoietin stimulation depends upon the presence or absence of cell-cell contacts.
Differential function of Tie2 at cell-cell contacts and cell-substratum contacts regulated by angiopoietin-1.
No sample metadata fields
View SamplesMET expression is elevated in a majority of human skin cancers but its contributions to pathogenesis have not been evaluated. In a mouse model of constitutive overexpression of HGF (MT-HGF), the incidence of squamous cell skin tumors induced by initiation with 7,12-dimethylbenz(a)anthracene (DMBA) followed by exposure to 12-O-tetradecanoyl-phorbol-13-acetate (TPA) is increased fivefold over control groups. Half of these tumors carry Hras1 or Kras mutations. Without DMBA initiation, tumors also erupt on MT-HGF mouse skin but only when TPA promotion is enhanced by crossing these mice with mice overexpressing cutaneous PKC. None of these tumors have Ras mutations. In culture, MT-HGF keratinocytes share identical MET mediated phenotypic and biochemical features with wildtype keratinocytes transformed by oncogenic RAS. In both cell types, these common features of initiated keratinocytes arise from autocrine activation of EGFR through elevated expression and release of EGFR ligands. Inhibition of EGFR ablates the initiated signature of MT-HGF keratinocytes in vitro and causes regression of MT-HGF induced tumors in vivo. Global gene expression data indicate that MT-HGF and RAS transformed keratinocytes share largely an identical profile of over 5000 mRNAs. Gene ontology analysis reveals the most affected concordant signature is enriched for functions relevant to tissue development and response to wounding, accompanied by cytokine and growth factor activity, and peptidase and endopeptidase activity previously not linked to initiated keratinocytes. Furthermore, gene co-expression analysis in skin cancer patients revealed a core RAS/MET co-expression network considerably activated in pre cancerous and cancerous lesions. Thus MET activation though EGFR contributes to human cutaneous cancers, and inhibitors could be efficacious in advanced lesions such as those seen in transplant recipient patients.
MET signaling in keratinocytes activates EGFR and initiates squamous carcinogenesis.
Specimen part
View SamplesPericytes confer vascular stability in the retina, and the loss of pericytes can cause the blood-retina barrier breakdown seen in diabetic retinopathy. To identify endothelial-specific genes expressed in pericyte-deprived retinal vessels, we purified genetically labeled endothelial cells from Tie2-GFP transgenic mice treated with neutralizing antibody against PDGFRb (APB5) and performed gene expression profiling using DNA microarray. To find out endothelial-specific genes associated with the loss of pericyte coverage, the comparison of microarray data was carried out between retinal endothelial cells (data from GSE27238) and APB5-treated retinal endothelial cells.
Sustained inflammation after pericyte depletion induces irreversible blood-retina barrier breakdown.
Specimen part
View SamplesIdentification of genes up-regulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas.
Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas.
Sex, Age, Specimen part
View SamplesHere we report that Nono instead functions as a chromatin regulator cooperating with Erk to regulate mESC pluripotency. We demonstrate that Nono loss leads to robust self-renewing mESCs with enhanced expression of Nanog and Klf4, epigenome and transcriptome re-patterning to a “ground-like state” with global reduction of H3K27me3 and DNA methylation resembling the Erk inhibitor PD03 treated mESCs and 2i (both GSK and Erk kinase inhibitors)-induced “ground state”. Mechanistically, Nono and Erk co-bind at a subset of development-related, bivalent genes. Ablation of Nono compromises Erk activation and RNA polymerase II C-terminal Domain serine 5 phosphorylation, and while inactivation of Erk evicts Nono from chromatin, revealing reciprocal regulation. Furthermore, Nono loss results in a compromised activation of its target bivalent genes upon differentiation and the differentiation itself. These findings reveal an unanticipated role of Nono in collaborating with Erk signaling to regulate the integrity of bivalent domain and mESC pluripotency. Overall design: mRNA-seq of parental and Nono-KO mES cells
Nono, a Bivalent Domain Factor, Regulates Erk Signaling and Mouse Embryonic Stem Cell Pluripotency.
Specimen part, Subject
View SamplesRecently there has been growing interest in the immunomodulatory effects of endogenous danger signals known as alarmins. In this study, we explore a new combination therapy of anti-CD4 depleting antibody with an alarmin, high mobility group nucleosome binding protein 1 (HMGN1). Extremely low dose of HMGN1 with anti-CD4 depleting antibody exerted robust anti-tumor effects in Colon26 subtaneous murine model. To understand transcriptomic differences of CD8+ T cells in the tumor-bearing mice after treated with anti-CD4 depleting antibody or combination therapy of HMGN1 with anti-CD4 depleting antibody, we performed CD8 T cell transcriptome analysis using 3'SAGE-seq and Ion Proton sequencer. Overall design: CD8+ T cells were purified from single cell suspension of each implanted mouse tumor by lineage sorting (CD45-CD11b-B220-CD49b-Ter119-CD4-CD8+) through FACSAria. CD8 T cell transcriptome analysis were generated by 3'SAGE-seq using Ion Proton sequencer.
Combined treatment with HMGN1 and anti-CD4 depleting antibody reverses T cell exhaustion and exerts robust anti-tumor effects in mice.
Specimen part, Cell line, Subject
View SamplesThe source of aldosterone in 30 to 40 % of patients with primary hyperaldosteronism (PA) is unilateral aldosterone-producing adenoma (APA). The mechanisms causing elevated aldosterone production in APA are unknown. Herein, we examined expression of G-protein coupled receptors (GPCR) in APA and demonstrate that compared to normal adrenals there is a general elevation of certain GPCR in many APA and/or ectopic expression of GPCR in others. RNA samples from normal adrenals (n = 5), APAs (n = 10), and cortisol-producing adenomas (CPAs) (n=13) were used on 15 genomic expression arrays, each of which included 223 GPCR transcripts presented in at least one out of 15 of the independent microarrays. The array results were confirmed using real-time RT-PCR (qPCR). Four GPCR transcripts exhibited a statistically significant increase that was greater than 3-fold compared to normal adrenals, suggesting a general increase in expression compared to normal adrenal glands. Four GPCR transcripts exhibited a greater than 15-fold increase of expression in one or more of the APA samples compared to normal adrenals. qPCR analysis confirmed array data and found the receptors with the highest fold increase in APA expression to be luteinizing hormone receptor (LH-R), serotonin receptor 4 (HTR4), gonadotropin-releasing hormone receptor (GnRHR), glutamate receptor metabotropic 3 (GRM3), endothelin receptor type B-like protein (GPR37), and ACTH receptor (MC2R). There are also sporadic increased expressions of these genes in the CPAs. Together, these findings suggest a potential role of altered GPCR expression in many cases of PA and provide candidate GPCR for further study.
G-protein-coupled receptors in aldosterone-producing adenomas: a potential cause of hyperaldosteronism.
No sample metadata fields
View Samples