The agonistic anti-human CD3 antibody , OKT-3, has been used to control acute transplant rejection. The in vivo administration of OKT-3 was previously shown to induce the partial depletion of T cells and anergy in the remaining CD4+ T cells. However, this therapy is also associated with the systemic release of several cytokines, which leads to a series of adverse side effects. We established a novel anti-human CD3 Ab, 20-2b2 (#1 abs), which recognized a close, but different determinant on the CD3 molecule from that recognized by OKT3. 20-2b2 was non-mitogenic for human CD4+ T cells, could inhibit the activation of T cells in vitro, and induced T cell anergy in in vivo experiments using humanized mice. Cytokine release in humanized mice induced by the administration of 20-2b2 was significantly less than that induced by OKT-3. Our results indicated that the CD3 molecule is still an attractive, effective, and useful target for the modulation of T cell responses. The establishment of other Abs that recognize CD3, even though the determinant recognized by those Abs may be close to or different from that recognized by OKT-3, may represent a novel approach for the development of safer Ab therapies using anti-CD3 Abs, in addition to the modification of OKT-3 in terms of the induction of cytokine production.
Modulation of the human T cell response by a novel non-mitogenic anti-CD3 antibody.
Specimen part, Disease, Disease stage
View SamplesWe report the high-throughput profiling of brain RNA from three Drosophila stains: dBRWD3PX2/+, dBRWD3PX2/PX2 and dBRWD3PX2/PX2, yemGS21861/GS21861. By obtaining over 50 million reads of sequence, WE compared the transcriptomic differences among the brains from these three stains. We found that the expression of 871 genes was significantly different between heterozygous control and homozygous dBRWD3 mutant brains (484 upregulated genes, 387 downregulated genes, p<0.05). Gene ontology (GO) analysis of the 871 genes revealed a broad spectrum of biological processes, ranging from synaptic activity to housekeeping metabolism subjective to dBRWD3 regulation. Among the 387 downregulated genes, the expression of 360 genes (92.8%) was increased in the dBRWD3, yem double mutant brains compared with dBRWD3 mutant. Among the 484 upregulated genes, the expression of 412 genes (85.1%) was decreased in the double mutant brains. These differential genes were evenly distributed on X chromosome and autosomes (149 on X, 178 on 2L, 154 on 2R, 166 on 3L, and 207 on 3R). These analyses indicate that dBRWD3 regulates gene expression in the brain mainly through the HIRA/YEM complex. Overall design: Examination of brain transcriptome in 3 Drosophila strains.
Intellectual disability-associated dBRWD3 regulates gene expression through inhibition of HIRA/YEM-mediated chromatin deposition of histone H3.3.
Specimen part, Cell line, Subject
View Sampleswe discovered that medulloblastomas that form in Ptch mice are composed of three different sibtypes depending on the cell of origin and tumor progression.
Epigenetic states of cells of origin and tumor evolution drive tumor-initiating cell phenotype and tumor heterogeneity.
Sex, Specimen part
View SamplesFollicular T-helper (TFH) cells are essential for germinal center (GC) responses. TFH localization in GCs is controlled by chemo-guidance cues and antigen-specific adhesion. Here we define an antigen-independent, contact-dependent, adhesive guidance system for TFH cells. Unusual for amoeboid cell migration, the system is composed of transmembrane plexin B2 (PlxnB2) molecule that is highly expressed by GC B cells and its transmembrane binding partner semaphorin 4C (Sema4C) that is upregulated on TFH cells. Instead of effectuating repulsion as a ligand, Sema4C serves as the receptor to sense PlxnB2 and bias TFH migration inward at the GC edge to penetrate the GC territory. The absence of PlxnB2 from the GC or Sema4C from TFH cells causes TFH accumulation along the GC border, impairs TFH -B cell interactions and is associated with defective plasma cell production and affinity maturation. Therefore, Sema4C and PlxnB2 regulate GC TFH recruitment and function and optimal antibody responses. Overall design: Plxnb2+/+ or Plxnb2-/- CFP-expressing MD4 B cells were co-transferred together with OT-II T cells into B6 recipients that were subsequently immunized with HEL-OVA subcutaneously. MD4 cells of the 7-AAD-CD19+IgD-GL7hiFashi GC phenotype were FACS-sorted from pooled draining lymph nodes on day 5. To conduct transcriptomic RNA-seq analyses on these cells, a protocol initially developed for single-cell RNA-seq (Tang et al., 2011) was modified to accommodate 400 sorted cells by doubling reaction volumes with extra buffers until the step for second strand DNA synthesis. Cells were directly sorted into the lysis buffer, and reverse transcription was carried out for individual sorts within 20 minutes after isolation to preserve sample integrity. SE-100 sequencing was conducted for all samples on a HiSeq 2500 sequencer (Illumina) at the Tsinghua. Sequence reads were aligned to the Mus musculus reference genome using TopHat2 and assembled by Cufflinks to calculate the FPKM for each transcript. Genes with an average read number of at least 1 were subjected to differential expression analysis by the DESeq2 software (Bioconductor) with a call threshold set at padj<0.1.
Plexin B2 and Semaphorin 4C Guide T Cell Recruitment and Function in the Germinal Center.
Specimen part, Cell line, Subject
View SamplesHere we report that Nono instead functions as a chromatin regulator cooperating with Erk to regulate mESC pluripotency. We demonstrate that Nono loss leads to robust self-renewing mESCs with enhanced expression of Nanog and Klf4, epigenome and transcriptome re-patterning to a “ground-like state” with global reduction of H3K27me3 and DNA methylation resembling the Erk inhibitor PD03 treated mESCs and 2i (both GSK and Erk kinase inhibitors)-induced “ground state”. Mechanistically, Nono and Erk co-bind at a subset of development-related, bivalent genes. Ablation of Nono compromises Erk activation and RNA polymerase II C-terminal Domain serine 5 phosphorylation, and while inactivation of Erk evicts Nono from chromatin, revealing reciprocal regulation. Furthermore, Nono loss results in a compromised activation of its target bivalent genes upon differentiation and the differentiation itself. These findings reveal an unanticipated role of Nono in collaborating with Erk signaling to regulate the integrity of bivalent domain and mESC pluripotency. Overall design: mRNA-seq of parental and Nono-KO mES cells
Nono, a Bivalent Domain Factor, Regulates Erk Signaling and Mouse Embryonic Stem Cell Pluripotency.
Specimen part, Subject
View SamplesWe conditionally inactivated mouse Cdx2, a dominant regulator of intestinal development, and mapped its genome occupancy in adult intestinal villi. Although homeotic transformation, observed in Cdx2-null embryos, was absent in mutant adults, gene expression and cell morphology were vitally compromised. Lethality was accelerated in mice lacking both Cdx2 and its homolog Cdx1, with exaggeration of defects in crypt cell replication and enterocyte differentiation. Cdx2 occupancy correlated with hundreds of transcripts that fell but not with equal numbers that rose with Cdx loss, indicating a predominantly activating role at intestinal cis-regulatory regions. Integrated consideration of a mutant phenotype and cistrome hence reveals the continued and distinct requirement in adults of a master developmental regulator that activates tissue-specific genes.
Essential and redundant functions of caudal family proteins in activating adult intestinal genes.
Specimen part
View SamplesAs Trypanosoma cruzi, the etiological agent of Chagas disease, multiplies in the cytoplasm of nucleated host cells, infection with this parasite is highly likely to affect host cells. We performed an exhaustive transcriptome analysis of T. cruzi-infected HeLa cells using an oligonucleotide microarray containing probes for greater than 47,000 human gene transcripts. In comparison with uninfected cells, those infected with T. cruzi showed greater than threefold up-regulation of 41 genes and greater than threefold down-regulation of 23 genes. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) of selected, differentially expressed genes confirmed the microarray data. Many of these up- and down-regulated genes were related to cellular proliferation, including seven up-regulated genes encoding proliferation inhibitors and three down-regulated genes encoding proliferation promoters, strongly suggesting that T. cruzi infection inhibits host cell proliferation, which may allow more time for T. cruzi to replicate and produce its intracellular nests. These findings provide new insight into the molecular mechanisms by which intracellular T. cruzi infection influences the host cell, leading to pathogenicity.
Transcriptome profile of Trypanosoma cruzi-infected cells: simultaneous up- and down-regulation of proliferation inhibitors and promoters.
No sample metadata fields
View SamplesOur previous investigation indicated that high-virulence C. gattii (C. gattii TIMM 4097) tend to reside in the alveoli, whereas low-virulence C. gattii (C. gattii TIMM 4903) tend to be washed out from the alveoli and move into the central side of the respiratory system. To test this hypothesis, we performed microarray assay.
How histopathology can contribute to an understanding of defense mechanisms against cryptococci.
Sex, Specimen part
View SamplesGIST is considered to invariably arise through gain-of-function KIT or PDGFRA mutation of the interstitial cells of Cajal (ICC). However, the genetic basis of the malignant progression of GIST is poorly understood.
Distinct gene expression-defined classes of gastrointestinal stromal tumor.
Sex, Age
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Intestinal master transcription factor CDX2 controls chromatin access for partner transcription factor binding.
Specimen part
View Samples