refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1252 results
Sort by

Filters

Technology

Platform

accession-icon GSE17183
Hepatic gene expression before and during interferon and ribavirin combination therapy
  • organism-icon Homo sapiens
  • sample-icon 108 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Patients who cleared HCV viremia early during therapy tended to show favorable outcomes, whereas patients who needed a longer period to clear HCV had poorer outcomes. We explored the mechanisms of treatment resistance by comparing hepatic gene expression before and during treatment

Publication Title

Differential interferon signaling in liver lobule and portal area cells under treatment for chronic hepatitis C.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE41737
MicroRNA-27a regulates lipid metabolism and inhibits hepatitis C virus replication in human hepatoma cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression profiling was carried out in Huh-7.5 cells in which miR-27a was over- or under-expressed. Transfection of cells with pre-miR-27a and pre-miR-control, or anti-miR-27a and anti-miR-control enabled down- and up-regulated genes to be determined, respectively.

Publication Title

MicroRNA-27a regulates lipid metabolism and inhibits hepatitis C virus replication in human hepatoma cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE57290
Branched-chain amino acids prevent hepatic fibrosis and development of hepatocellular carcinoma in a non-alcoholic steatohepatitis mouse model
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

BCAA were administered to atherogenic and high-fat (Ath & HF) diet-induced nonalcoholic steatohepatitis (NASH) model mice and platelet-derived growth factor C transgenic mice (Pdgf-c Tg). Liver histology, tumor incidence, and gene expression profiles were evaluated.

Publication Title

Branched-chain amino acids prevent hepatic fibrosis and development of hepatocellular carcinoma in a non-alcoholic steatohepatitis mouse model.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP066481
A Mammalian Enhancer trap Resource for Discovering and Manipulating Neuronal Cell Types
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

There is a continuing need for driver strains to enable cell type-specific manipulation in the nervous system. Each cell type expresses a unique set of genes, and recapitulating expression of marker genes by BAC transgenesis or knock-in has generated useful transgenic mouse lines. However since genes are often expressed in many cell types, many of these lines have relatively broad expression patterns. We report an alternative transgenic approach capturing distal enhancers for more focused expression. We identified an enhancer trap probe often producing restricted reporter expression and developed efficient enhancer trap screening with the PiggyBac transposon. We established more than 200 lines and found many lines that label small subsets of neurons in brain substructures, including known and novel cell types. Images and other information about each line are available online (http://enhnacertrap.bio.brandeis.edu). Overall design: Examination of 6 cortical mouse neuronal cell types. 5 of which are in layer 6 in 3 different cortical regions.

Publication Title

A Mammalian enhancer trap resource for discovering and manipulating neuronal cell types.

Sample Metadata Fields

Sex, Cell line, Subject

View Samples
accession-icon GSE8167
Distinct gene-expression-defined classes of gastrointestinal stromal tumor (GIST).
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

GIST is considered to invariably arise through gain-of-function KIT or PDGFRA mutation of the interstitial cells of Cajal (ICC). However, the genetic basis of the malignant progression of GIST is poorly understood.

Publication Title

Distinct gene expression-defined classes of gastrointestinal stromal tumor.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE32646
GSTP1 expression predicts poor pathological complete response to neoadjuvant chemotherapy in ER-negative breast cancer
  • organism-icon Homo sapiens
  • sample-icon 110 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The purpose of the present study was to investigate the association of glutathione S-transferase P1 (GSTP1) expression with resistance to neoadjuvant paclitaxel followed by 5-fluorouracil/epirubicin/cyclophosphamide (P-FEC) in human breast cancers. The relationship of GSTP1 expression and GSTP1 promoter hypermethylation with intrinsic subtypes was also investigated. In this study, primary breast cancer patients (n = 123, stage II-III) treated with neoadjuvant P-FEC were analyzed. Tumor samples were obtained by vacuum-assisted core biopsy before P-FEC. GSTP1 expression was determined using immunohistochemistry, GSTP1 promoter methylation index (MI) using bisulfite methylation assay and intrinsic subtypes using DNA microarray. The pathological complete response (pCR) rate was significantly higher in GSTP1-negative tumors (80.0%) than GSTP1-positive tumors (30.6%) (P = 0.009) among estrogen receptor (ER)-negative tumors but not among ER-positive tumors (P = 0.267). Multivariate analysis showed that GSTP1 was the only predictive factor for pCR (P = 0.013) among ER-negative tumors. Luminal A, luminal B and HER2-enriched tumors showed a significantly lower GSTP1 positivity than basal-like tumors (P = 0.002, P < 0.001 and P = 0.009, respectively), while luminal A, luminal B and HER2-enriched tumors showed a higher GSTP1 MI than basal-like tumors (P = 0.076, P < 0.001 and P < 0.001, respectively). In conclusion, these results suggest the possibility that GSTP1 expression can predict pathological response to P-FEC in ER-negative tumors but not in ER-positive tumors. Additionally, GSTP1 promoter hypermethylation might be implicated more importantly in the pathogenesis of luminal A, luminal B and HER2-enriched tumors than basal-like tumors.

Publication Title

GSTP1 expression predicts poor pathological complete response to neoadjuvant chemotherapy in ER-negative breast cancer.

Sample Metadata Fields

Age, Specimen part, Disease stage

View Samples
accession-icon GSE21156
Expression data from rostral forebrains of wild-type and Fezf1-/- Fezf2-/- mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Zinc-finger genes Fezf1 and Fezf2 encode transcriptional repressors. Fezf1 and Fezf2 are expressed in the early neural stem/progenitor cells and control neuronal differentiation in mouse dorsal telencephalon.

Publication Title

Zinc finger genes Fezf1 and Fezf2 control neuronal differentiation by repressing Hes5 expression in the forebrain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE9451
Identification of Signature Molecule-Marked Native Mesenchymal Stem Cells
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background. The in vivo distribution status and molecular signature of bone marrow mesenchymal stem cells (MSC) remain unknown, although ex vivo expanded MSC have been used in numerous studies.

Publication Title

Identification of mesenchymal stem cell (MSC)-transcription factors by microarray and knockdown analyses, and signature molecule-marked MSC in bone marrow by immunohistochemistry.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE58063
Time course IAA treatment Arabidopsis seedlings
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.1 ST Array (aragene11st)

Description

7-days-old Arabidopsis seedlings of wildtype (Col-0) were treated with 1 M IAA for 15 minutes or 3 hours and gene expression of whole plant was analyzed using Affymetrix Gene 1.1 ST Array strips.

Publication Title

AtCAST3.0 update: a web-based tool for analysis of transcriptome data by searching similarities in gene expression profiles.

Sample Metadata Fields

Age, Treatment, Time

View Samples
accession-icon GSE12198
Primary NKcells vs. NKAES-derived NK cells vs. NKcells stimulated by low/high dose IL2 after 7days of culture
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transcriptional profiling of NKAES-derived NK cells after 7 days of culture compared to primary human NK cells and NK cells stimulated by low or high dose IL2 after 7 days of culture.

Publication Title

Expansion of highly cytotoxic human natural killer cells for cancer cell therapy.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact