refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 161 results
Sort by

Filters

Technology

Platform

accession-icon GSE7645
Expression data for Saccharomyces cerevisiae oxidative stress response
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

Oxidative stress is a harmful condition in a cell, tissue, or organ, caused by an imbalnace between reactive oxygen species and other oxidants and the capacity of antioxidant defense systems to remove them. The budding yeast S. cerevisiae has been the major eukaryotic model for studies of response to oxidative stress.

Publication Title

The genome-wide early temporal response of Saccharomyces cerevisiae to oxidative stress induced by cumene hydroperoxide.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9861
Effect of Plasmodium falciparum infected erythrocytes on primary human brain microvascular endothelial cell
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Cerebral malaria is a severe multifactorial condition associated with the interaction of high numbers of infected erythrocytes to human brain endothelium without invasion into the brain. The result is coma and seizures with death in more than 20% of cases. Because the brain endothelium is at the interface of these processes, we investigated the global gene responses of human brain endothelium after the interaction with Plasmodium falciparuminfected erythrocytes with either high- or low-binding phenotypes. The most significantly up-regulated transcripts were found in gene ontology groups comprising the immune response, apoptosis and antiapoptosis, inflammatory response, cell-cell signaling, and signal transduction and nuclear factor B (NF-B) activation cascade. The proinflammatory NF-B pathway was central to the regulation of the P falciparummodulated endothelium transcriptome. The proinflammatory molecules, for example, CCL20, CXCL1, CXCL2, IL-6, and IL-8, were increased more than 100-fold, suggesting an important role of blood-brain barrier (BBB) endothelium in the innate defense during P falciparuminfected erythrocyte (Pf-IRBC) sequestration. However, some of these diffusible molecules could have reversible effects on brain tissue and thus on neurologic function. The inflammatory pathways were validated by direct measurement of proteins in brain endothelial supernatants. This study delineates the strong inflammatory component of human brain endothelium contributing to cerebral malaria.

Publication Title

Plasmodium falciparum-infected erythrocytes induce NF-kappaB regulated inflammatory pathways in human cerebral endothelium.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-MEXP-2144
Transcription profiling by array of Arabidopsis distal leaves in response to wounding
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Systemic transcriptional responses in Arabidopsis thaliana distal leaves to wounding

Publication Title

The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE56084
Gene expression data from the ATAD3A stable knockdown MDA-MB-231 cells and the control cells
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

From our previous data, we found that loss of ATAD3A gene expression in breast cancer cells results in loss of cell motility in vitro and metastasis in vivo. To obtain a better understanding of oncogenic pathway of ATAD3A, we have established the stable ATAD3A knockdown MDA-MB-231 cells using lentiviral strategy.

Publication Title

Mitochondrial ATAD3A combines with GRP78 to regulate the WASF3 metastasis-promoting protein.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP068458
Independent roles of switching and hypermutation in the development and persistence of B lymphocyte memory [IgM_IgG1]
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Somatic hypermutation (SHM) and class switch recombination (CSR) increase the affinity and diversify the effector functions of antibodies during immune responses. Although SHM and CSR are fundamentally different, their independent roles in regulating B cell fate have been difficult to uncouple because a single enzyme, activation-induced cytidine deaminase (encoded by Aicda), initiates both reactions. Here, we used a combination of Aicda and antibody mutant alleles that separate the effects of CSR and SHM on polyclonal immune responses. We found that class-switching to IgG1 biased the fate choice made by B cells, favoring the plasma cell over memory cell fate without significantly affecting clonal expansion in the germinal center (GC). In contrast, SHM reduced the longevity of memory B cells by creating polyreactive specificities that were selected against over time. Our data define the independent contributions of SHM and CSR to the generation and persistence of memory in the antibody system. Overall design: IgG1 and IgM light zone (LZ) and dark zone (DZ) germinal center (GC) B cells were compared in immunized AIDcre/- IgH-96K/+ R26-LSL-YFP mice.

Publication Title

Independent Roles of Switching and Hypermutation in the Development and Persistence of B Lymphocyte Memory.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE95250
Early Induction of NRF-2 Antioxidant Pathway by RHBDF2 Mediates More Rapid Cutaneous Healing in Mice
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Rhomboid family protein RHBDF2, an upstream regulator of the epidermal growth factor (EGF) receptor signaling, has been implicated in cutaneous wound healing. However, the underlying molecular mechanisms are still emerging. Using a gain-of-function mutation in the mouse Rhbdf2 gene (Rhbdf2cub/cub), which shows a regenerative phenotype, we sought to identify the underlying mechanism.

Publication Title

Early induction of NRF2 antioxidant pathway by RHBDF2 mediates rapid cutaneous wound healing.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon SRP068460
Independent roles of switching and hypermutation in the development and persistence of B lymphocyte memory [Nurr77]
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Somatic hypermutation (SHM) and class switch recombination (CSR) increase the affinity and diversify the effector functions of antibodies during immune responses. Although SHM and CSR are fundamentally different, their independent roles in regulating B cell fate have been difficult to uncouple because a single enzyme, activation-induced cytidine deaminase (encoded by Aicda), initiates both reactions. Here, we used a combination of Aicda and antibody mutant alleles that separate the effects of CSR and SHM on polyclonal immune responses. We found that class-switching to IgG1 biased the fate choice made by B cells, favoring the plasma cell over memory cell fate without significantly affecting clonal expansion in the germinal center (GC). In contrast, SHM reduced the longevity of memory B cells by creating polyreactive specificities that were selected against over time. Our data define the independent contributions of SHM and CSR to the generation and persistence of memory in the antibody system. Overall design: IgG1 and IgM light zone (LZ) germinal center (GC) B cells that were Nurr77-GFP+ or Nurr77-GFP- were compared in immunized AIDcre/- IgH-96K/+ Nurr77-GFP mice.

Publication Title

Independent Roles of Switching and Hypermutation in the Development and Persistence of B Lymphocyte Memory.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE43225
The effect of IM and MSC treatment on gene expression in CML CD34+ cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Tyrosine kinase inhibitors (TKI) are highly effective in treatment of chronic myeloid leukemia (CML) but do not eliminate leukemia stem cells (LSC), which remain a potential source of relapse. TKI treatment effectively inhibits BCR-ABL kinase activity in CML LSC, suggesting that additional kinase-independent mechanisms contribute to LSC preservation. We investigated whether signals from the bone marrow (BM) microenvironment protect CML LSC from TKI treatment. Coculture with human BM mesenchymal stromal cells (MSC) significantly inhibited apoptosis and preserved CML stem/progenitor cells following TKI exposure, maintaining colony forming ability and engraftment potential in immunodeficient mice. We found that the N-Cadherin receptor plays an important role in MSC-mediated protection of CML progenitors from TKI. N-Cadherin-mediated adhesion to MSC was associated with increased cytoplasmic N-Cadherin--catenin complex formation, as well as enhanced -catenin nuclear translocation and transcriptional activity. Increased exogenous Wnt-mediated -catenin signaling played an important role in MSC-mediated protection of CML progenitors from TKI treatment. Our results reveal a close interplay between N-Cadherin and the Wnt--catenin pathway in protecting CML LSC during TKI treatment. Importantly, these results reveal novel mechanisms of resistance of CML LSC to TKI treatment, and suggest new targets for treatment designed to eradicate residual LSC in CML patients.

Publication Title

Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt-β-catenin signaling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39788
Mapping of Three Genetic Determinants of Susceptibility to Estrogen-Induced Mammary Cancer within the Emca8 Locus on Rat Chromosome 5
  • organism-icon Rattus norvegicus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

We are using the ACI rat model of 17beta-estradiol induced mammary cancer to define the mechanisms through which estrogens contribute to breast cancer development; identify and functionally characterize the genetic variants that determine susceptibility; and define the hormone-gene-environment interactions that influence development of mammary cancer in this physiologically relevant rat model. Female ACI rats are uniquely susceptible to development of mammary cancer when treated continuously with physiologic levels of 17beta-estradiol. Induction of mammary cancer in female ACI rats occurs through a mechanism that is largely dependent upon estrogen receptor-alpha. Interval mapping analyses of progeny generated in intercrosses between susceptible ACI rats and resistant Brown Norway (BN) rats revealed seven quantitative trait loci (QTL), designated Emca3 (Estrogen-induced mammary cancer) through Emca9, each of which harbors one or more genetic determinants of mammary cancer susceptibility. Genes that reside within Emca8 on RNO5 and were differentially expressed between 17beta-estradiol treated ACI and ACI.BN-Emca8 congenic rats were identified as Emca8 candidates.

Publication Title

Mapping of three genetic determinants of susceptibility to estrogen-induced mammary cancer within the Emca8 locus on rat chromosome 5.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP061538
T cell help controls the speed of the cell cycle in germinal center B cells.
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The germinal center (GC) is a microanatomical compartment wherein high-affinity antibody-producing B cells are selectively expanded. B cells proliferate and mutate their antibody genes in the dark zone (DZ) of the GC and are then selected by T cells in the light zone (LZ) on the basis of affinity. Here, we show that T cell help regulates the speed of cell cycle phase transitions and DNA replication of GC B cells. Genome sequencing and single-molecule analyses revealed that T cell help shortens S phase by regulating replication fork progression while preserving the relative order of replication origin activation. Thus, high-affinity GC B cells are selected by a mechanism that involves prolonged dwell time in the DZ where selected cells undergo accelerated cell cycles. Overall design: To determine whether GC B cells receiving high levels of T cell help show a specific change in gene expression, we compared DZ cells in the G1 phase of the cell cycle from aDEC-OVA and control aDEC-CS treated GCs using a fluorescent ubiquitination-based cell cycle indicator (Fucci-tg). RNA sequencing revealed that T cell-mediated selection produced an increase in gene expression programs associated with the cell cycle, metabolism, including the metabolism of nucleotides, and genes downstream of c-Myc and the E2F transcription factors.

Publication Title

HUMORAL IMMUNITY. T cell help controls the speed of the cell cycle in germinal center B cells.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact