refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 210 results
Sort by

Filters

Technology

Platform

accession-icon GSE22122
Phosphoglycerate mutase knock-out mutant Saccharomyces cerevisiae: physiological investigation and transcriptome analysis
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Characterize the gpm1 mutant growth on dual substrate of ethanol and glycerol

Publication Title

Phosphoglycerate mutase knock-out mutant Saccharomyces cerevisiae: physiological investigation and transcriptome analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2406
WTv.AOXantisense
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Leaf transcriptome comparison of untransformed Col-0 Arabidopsis plants with plants transformed to be anti-sense for AtAOX1a (alternative oxidase). Two bio-replicates were sampled, for a total of four microarray chipsCol-0 and anti-sense leaf tissue from a first planting (samples GSM45208 and GSM45231, respectively), and from a second planting made one week later (samples GSM45209 and GSM45278, respectively). See sample descriptions for growth conditions and microarray procedure.

Publication Title

Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE60187
Evaluation of Niacinamide effects on murine primary macrophage transcriptional regulation and cell cycle progression.
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Murine MafB/c-MAF double KO (Maf-DKO) primary macrophages are known for their unlimited non-tumorigenic self-renewal ability (Aziz et al., 2009). In an in vitro screen for cytokines and small molecules we identified Niacinamide (NAM) a potent inhibitor of their proliferative potential characterized by a reversible cell cycle arrest.

Publication Title

SIRT1 regulates macrophage self-renewal.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21444
Expression profiling of murine DCIS and invasive ductal breast carcinoma
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Murine healthy tissue samples, DCIS and invasive mammary tumors were analyzed in order to identify marker genes which show enhanced expresssion in DCIS and invasive ductal carcinomas.

Publication Title

Identification of early molecular markers for breast cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21422
Expression profiling of human DCIS and invasive ductal breast carcinoma
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human healthy tissue samples, DCIS and invasive mammary tumors were analyzed in order to identify marker genes which show enhanced expresssion in DCIS and invasive ductal carcinomas.

Publication Title

Identification of early molecular markers for breast cancer.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE64468
Molecular mechanism of flocculation self-recognition in yeast and its role in mating and survival
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Saccharomyces cerevisiae flocculation occurs when fermentable sugars are limiting and is therefore considered as a way to enhance the survival chance of Flo-expressing yeast cells. In this paper, the role of Flo1p in mating was demonstrated by showing that the mating efficiency, which contributes to the increased survival rate as well by generating genetic variability, is increased when cells flocculate. This was revealed by liquid growth experiments in a low shear environment and differential transcriptome analysis of FLO1 expressing cells compared to the non-flocculent wild-type cells. The results show that a floc provides a uniquely organized multicellular ultrastructure that provides a suitable microenvironment to induce and perform cell conjugation.

Publication Title

Molecular mechanism of flocculation self-recognition in yeast and its role in mating and survival.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE69421
Genetic background of immune complications
  • organism-icon Homo sapiens
  • sample-icon 51 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Differencies between groups between pre and post haematopoietic stem cell transplantation children

Publication Title

Genetic Background of Immune Complications after Allogeneic Hematopoietic Stem Cell Transplantation in Children.

Sample Metadata Fields

Specimen part, Disease stage

View Samples
accession-icon GSE87493
Gene expression in blood of obese pediatric patients
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Differences between groups of children with obesity and healthy controls.

Publication Title

Looking for new diagnostic tools and biomarkers of hypertension in obese pediatric patients.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon SRP072732
Microglia development follows a stepwise program to regulate brain homeostasis - RNA seq
  • organism-icon Mus musculus
  • sample-icon 83 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Microglia play important roles in life-long brain maintenance and in pathology, but are also crucial in the developing central nervous system; yet their regulatory dynamics during development have not been fully elucidated. Genome-wide chromatin and expression profiling coupled with single-cell transcriptomic analysis throughout development reveal that microglia undergo three temporal developmental stages in synchrony with the brain: early, pre-, and adult microglia, which are under the control of distinct regulatory circuits. Knockout of the transcription factor MafB caused disruption of homeostasis in adulthood and increased inflammation. Environmental perturbations, such as the microbiome or prenatal immune activation, led to dysregulation of the developmental program, particularly in terms of inflammation. Together, our work identifies a stepwise developmental program of microglia integrating immune response pathways that may be associated with several neurodevelopmental disorders. Overall design: Yolk sac progenitors (CD45+CD11B+CX3CR1-GFP+), microglia from early brain (CD45+CD11B+CX3CR1-GFP+), and microglia from later stages (CD45intCD11BintCX3CR1-GFP+) were isolated from CX3CR1+ C57BL/6J mice or microglia from perturbation models (CD45intCD11Bint) from mice of C57BL/6J background

Publication Title

Microglia development follows a stepwise program to regulate brain homeostasis.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE81740
Regulation of NRF2 signaling by O-GlcNAcylation of KEAP1
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

O-GlcNAcylation is an essential, nutrient-sensitive post-translational modification, but its biochemical and phenotypic effects remain incompletely understood. To address this knowledge gap, we investigated the global transcriptional response to perturbations in O-GlcNAcylation. Unexpectedly, many transcriptional effects of O-GlcNAc transferase (OGT) inhibition were due to the activation of NRF2, the master regulator of redox stress tolerance. Moreover, we found that a signature of low OGT activity strongly correlates with NRF2 activation in multiple tumor expression datasets. Guided by this information, we identified KEAP1 (also known as KLHL19), the primary negative regulator of NRF2, as a direct substrate of OGT. We show that O-GlcNAcylation of KEAP1 at serine 104 is required for the efficient ubiquitination and degradation of NRF2. Interestingly, O-GlcNAc levels and NRF2 activation co-vary in response to glucose fluctuations, indicating that KEAP1 O-GlcNAcylation links nutrient sensing to downstream stress resistance. Our results reveal a novel regulatory connection between nutrient-sensitive glycosylation and NRF2 signaling, and provide a blueprint for future approaches to discover functionally important O-GlcNAcylation events on other KLHL family proteins in various experimental and disease contexts.

Publication Title

Glycosylation of KEAP1 links nutrient sensing to redox stress signaling.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact