Exploring the expression profile of ovarian clear cell carcinoma cancer cell subpopulations- derived tumors grown within a murine and a human cellular tissues.
Niche-dependent gene expression profile of intratumoral heterogeneous ovarian cancer stem cell populations.
Specimen part
View SamplesThis data was used to determine levels of BRCA1 and BRCA2 in primary human leukemia samples. Samples were determined to be high BRCA1 and/or BRCA2 or low BRCA1 and/or BRAC2.
Personalized synthetic lethality induced by targeting RAD52 in leukemias identified by gene mutation and expression profile.
No sample metadata fields
View SamplesA comparison of global gene expression between rigorously defined stem and progenitor cells from patients with chronic myeloid leukaemia (CML) in chronic (CP), accelerated (AP) and blastic (BC) phase and similar populations isolated from normal volunteers.
Personalized synthetic lethality induced by targeting RAD52 in leukemias identified by gene mutation and expression profile.
Specimen part, Disease, Disease stage, Subject
View SamplesLamins are components of the peripheral nuclear lamina and interact with heterochromatic genomic regions, termed lamina-associated domains (LADs). In contrast to lamin B1, lamin A/C also localizes throughout the nucleus, where it associates with the chromatin-binding protein lamina-associated polypeptide (LAP) 2alpha. Here we show lamin A/C also interacts with euchromatin, as determined by chromatin immunoprecipitation analyses of eu- and heterochromatin-enriched samples. By way of contrast, lamin B1 was only found associated with heterochromatin. Euchromatic regions occupied by lamin A/C overlap with those bound by LAP2alpha, the depletion of which shifts binding of lamin A/C towards more heterochromatic regions. These alterations in lamin A/C chromatin interaction affect epigenetic histone marks in euchromatin without significantly affecting gene expression, while loss of lamin A/C in heterochromatic regions increased gene expression. Our data show a novel role of nucleoplasmic lamin A/C and LAP2alpha in regulating euchromatin. Overall design: Examination of LaminA, LaminB and Lap2a DNA binding in Lap2alpha +/+ and Lap2a -/- cells and according changes in Histone modifications and gene expression
A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha.
No sample metadata fields
View SamplesAtopic dermatitis (AD) is a common inflammatory skin disease with underlying defects in epidermal function and immune responses. The goal of this study was to investigate differences in gene expression in lesional skin from patients with mild extrinsic or intrinsic AD compared to skin from healthy controls and from lesional psoriasis skin. The aim was to identify differentially expressed genes involved in skin barrier formation and inflammation, and to compare our results with those reported for patients with moderate and severe AD.
Distinct molecular signatures of mild extrinsic and intrinsic atopic dermatitis.
Specimen part, Disease
View SamplesBoth p150 and p110 isoforms of ADAR1 convert adenosine to inosine in double-stranded RNA (dsRNA). The p150 isoform suppresses the dsRNA sensing mechanism that activates the interferon induction mediated by the MDA5-MAVS signaling. In contrast, the biological function of the p110 isoform localized in the nucleus remains largely unknown. Here we show that stress-activated phosphorylation of ADAR1p110 by MKK6/p38 MAP kinases promotes its binding to Exportin-5 and nuclear export to the cytoplasm. Once translocated to the cytoplasmic, ADAR1p110 suppresses apoptosis of stressed cells by protecting many anti-apoptotic gene transcripts that contain 3'UTR dsRNA structures such as those consisting of inverted Alu repeats. ADAR1p110 competitively inhibits binding of Staufen1 to the 3'UTR dsRNAs and antagonizes the Staufen1-mediated mRNA decay mechanism. Our studies revealed a new stress response mechanism regulated by MAP kinases, in which ADAR1p110 translocates to the cytoplasm and regulates a class of mRNAs required for survival of stressed cells. Overall design: Examination of transcription changes due to ADAR1 and double ADAR1/STAU1 knockdown using RNA-seq
ADAR1 controls apoptosis of stressed cells by inhibiting Staufen1-mediated mRNA decay.
No sample metadata fields
View SamplesWe aimed to determine the infect of Ascaris suum infection on mucosal immune pathways in pigs
Ascaris Suum Infection Downregulates Inflammatory Pathways in the Pig Intestine In Vivo and in Human Dendritic Cells In Vitro.
Specimen part
View SamplesEwing Sarcoma is caused by a pathognomonic genomic translocation that places an N-terminal EWSR1 gene in approximation with one of several ETS genes (typically FLI1). This aberration, in turn, alters the transcriptional regulation of more than five hundred genes and perturbs a number of critical pathways that promote oncogenesis, cell growth, invasion, and metastasis. Among them, translocation-mediated up-regulation of the insulin-like growth factor receptor 1 (IGF-1R) and mammalian target of rapamycin (mTOR) are of particular importance since they work in concert to facilitate IGF-1R expression and ligand-induced activation, respectively, of proven importance in ES transformation. When used as a single agent in Ewing sarcoma therapy, IGF-1R or mTOR inhibition leads to rapid counter-regulatory effects that blunt the intended therapeutic purpose. Therefore, identify new mechanisms of resistance that are used by Ewing sarcoma to evade cell death to single-agent IGF-1R or mTOR inhibition might suggest a number of therapeutic combinations that could improve their clinical activity.
IGF-1R and mTOR Blockade: Novel Resistance Mechanisms and Synergistic Drug Combinations for Ewing Sarcoma.
Specimen part
View SamplesThe present study reports an unbiased analysis of the genetic profile and regulation of NKG2D expressing CD4 T-cells.An Affymetrix microarray analysis was used to explore the genetic profile of NKG2D+ versus NKG2D- CD4 T-cells. The genetic profile was studied by single gene analysis and gene set enrichment analysis. I found that several immune regulatory receptors was regulated differently in NKG2D+ versus NKG2D- CD4 T-cells. Futhermore, I found that NKG2D+ CD4 T-cells display a genetic profile of cytotoxic T-cells. The gene set enrichment analysis revealed a change in 19 processes, including ARF GTPase activator activity; RNA splicing; Signal transduction; Interspecies interaction between organisms; Regulation of ARF GTPase activity; Cell motility; Mitosis; Cell cycle; Anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process; Induction of apoptosis by extracellular signals; Negative regulation of apoptosis; mRNA export from nucleus; Positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle; Cell division; Protein polymerization; Spliceosome assembly; Microtubule-based movement; Immune response; mRNA processing.
Regulation and gene expression profiling of NKG2D positive human cytomegalovirus-primed CD4+ T-cells.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide analysis in human colorectal cancer cells reveals ischemia-mediated expression of motility genes via DNA hypomethylation.
Cell line, Treatment
View Samples