The deposit microarray data were generated in a study that comprehensively integrated gene expression profiles and metabolic responses of Caco-2 cells that incubated with either E. coli K-12 or O157:H7. The aim of this study is to examine the impact of colonic bacteria on the global gene expression regulation and metabolite levels of the host, and investigate the molecular mechanics of the E. coli/host interaction.
Cross-talk between E. coli strains and a human colorectal adenocarcinoma-derived cell line.
Cell line, Treatment
View SamplesLeptin binding to the leptin receptor (LepR) causes rapid signaling to the nucleus. We investigated the early (2 hr) transcriptional response to acute leptin injectio (intracerebroventricular)
Ancient origins and evolutionary conservation of intracellular and neural signaling pathways engaged by the leptin receptor.
Specimen part, Treatment
View SamplesOxidative DNA damage has been associated with cognitive decline. The Ogg1 and Mutyh DNA glycosylases cooperate to prevent mutations caused by 8-oxoG, a major premutagenic oxidative DNA base lesion. Here, we have examined behavior and cognitive function in mice deficient of these glycosylases. We found that Ogg1-/-Mutyh-/- mice were more active and less anxious and that their learning ability was impaired. In contrast, Mutyh-/- mice showed moderately improved memory compared to WT. There was no change in genomic 8-oxoG levels, suggesting that Ogg1 and Mutyh play minor roles in global repair in adult brain. Notably, transcriptome analysis of hippocampus revealed that differentially expressed genes in the mutant mice belong to pathways known to be involved in anxiety and cognitive function. Thus, beyond their involvement in DNA repair, Ogg1 and Mutyh modulate cognitive function and behavior, and related hippocampal gene expression, suggesting a novel role for 8-oxoG in regulating adaptive behavior. Overall design: The mRNA profiles from hippocampus of WT, Ogg1-/-, Mutyh-/- and Ogg1-/- Mutyh-/- C57BL/6 mice at 6month of age were generated by RNA sequencing using Illumina Hiseq 2000
Synergistic Actions of Ogg1 and Mutyh DNA Glycosylases Modulate Anxiety-like Behavior in Mice.
Age, Specimen part, Cell line, Subject
View SamplesThis data was used to determine levels of BRCA1 and BRCA2 in primary human leukemia samples. Samples were determined to be high BRCA1 and/or BRCA2 or low BRCA1 and/or BRAC2.
Personalized synthetic lethality induced by targeting RAD52 in leukemias identified by gene mutation and expression profile.
No sample metadata fields
View SamplesA comparison of global gene expression between rigorously defined stem and progenitor cells from patients with chronic myeloid leukaemia (CML) in chronic (CP), accelerated (AP) and blastic (BC) phase and similar populations isolated from normal volunteers.
Personalized synthetic lethality induced by targeting RAD52 in leukemias identified by gene mutation and expression profile.
Specimen part, Disease, Disease stage, Subject
View SamplesMyocardial infarction (MI) triggers a reparative response involving fibroblast proliferation and differentiation driving extracellular matrix modulation necessary to form a stabilizing scar. Recently, it was shown that a genetic variant of the base excision repair enzyme endonuclease VIII-like 3 (NEIL3) was associated with increased risk of MI in humans. Here, we report elevated myocardial NEIL3 expression in heart failure patients and marked myocardial upregulation of Neil3 following MI in mice, especially in a fibroblast-enriched cell fraction. Neil3-/- mice showed increased mortality after MI compared to WT, caused by myocardial rupture. Neil3-/- hearts displayed enrichment of mutations in genes involved in mitogenesis of fibroblasts and transcriptome analysis revealed dysregulated fibrosis. Correspondingly, proliferation of vimentin+ and aSMA+ (myo)fibroblasts was increased in Neil3-/- hearts following MI. We propose that NEIL3 operates in genomic regions crucial for regulation of cardiac fibroblast proliferation and thereby controls extracellular matrix modulation after MI. Overall design: RNA from infarcted and non-infarcted LV of WT and Neil3-/- C57BL/6 mice obtained three days after induced myocardial infarction were subjected to RNA sequencing using Illumina Hiseq 2000
NEIL3-Dependent Regulation of Cardiac Fibroblast Proliferation Prevents Myocardial Rupture.
Age, Specimen part, Cell line, Subject
View SamplesHuman induced pluripotent stem (iPS) cells have previously been derived from somatic cells using viral vectors that integrate transgenes into the genome. Genomic integration, however, can allow persistent leaky expression of the transgenes and can create insertional mutations, thus limiting the utility of these cells for both research and clinical applications. Here, we describe the derivation of human iPS cells free of vector and transgene sequences using non-integrating oriP/EBNA1-based episomal vectors. The resulting iPS cells are similar to human embryonic stem (ES) cells in both proliferative and developmental potential. These results demonstrate that reprogramming of human somatic cells does not require genomic integration or the continued presence of exogenous reprogramming factors, and removes one important obstacle to the clinical applications of these cells.
Human induced pluripotent stem cells free of vector and transgene sequences.
Specimen part
View SamplesHuman induced pluripotent stem (iPS) cells have previously been derived from somatic cells using viral vectors that integrate transgenes into the genome. Genomic integration, however, can allow persistent leaky expression of the transgenes and can create insertional mutations, thus limiting the utility of these cells for both research and clinical applications. Here, we describe the derivation of human iPS cells free of vector and transgene sequences using non-integrating oriP/EBNA1-based episomal vectors. The resulting iPS cells are similar to human embryonic stem (ES) cells in both proliferative and developmental potential. These results demonstrate that reprogramming of human somatic cells does not require genomic integration or the continued presence of exogenous reprogramming factors, and removes one important obstacle to the clinical applications of these cells.
Human induced pluripotent stem cells free of vector and transgene sequences.
Specimen part
View SamplesHuman induced pluripotent stem (iPS) cells have previously been derived from somatic cells using viral vectors that integrate transgenes into the genome. Genomic integration, however, can allow persistent leaky expression of the transgenes and can create insertional mutations, thus limiting the utility of these cells for both research and clinical applications. Here, we describe the derivation of human iPS cells free of vector and transgene sequences using non-integrating oriP/EBNA1-based episomal vectors. The resulting iPS cells are similar to human embryonic stem (ES) cells in both proliferative and developmental potential. These results demonstrate that reprogramming of human somatic cells does not require genomic integration or the continued presence of exogenous reprogramming factors, and removes one important obstacle to the clinical applications of these cells.
Human induced pluripotent stem cells free of vector and transgene sequences.
Specimen part
View SamplesIn this accession we provide pseudouridylation measurements upon knockdown and/or overexpression three pseudouridine synthases, two of which (TRUB1 and PUS7) we find to be with predominant activity on mammalian mRNA. Overall design: Examination of pseudouridylation upon genetic perturbation of three pseudouridine synthases
TRUB1 is the predominant pseudouridine synthase acting on mammalian mRNA via a predictable and conserved code.
Cell line, Treatment, Subject
View Samples