The molecular determinants of a healthy human liver cell phenotype remain largely uncharacterized. In addition, the gene expression changes associated with activation of primary human hepatic stellate cells, a key event during fibrogenesis, remain poorly characterized. Here, we provide the transriptomic profile underpinning the healthy phenotype of human hepatocytes, liver sinusoidal endothelial cells (LSECs) and quiescent hepatic stellate cells (qHSCs) as well as activated HSCs (aHSCs)
Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells.
Sex, Age, Specimen part, Subject
View SamplesThe beneficial effect of the selective
Gene expression preferentially regulated by tamoxifen in breast cancer cells and correlations with clinical outcome.
No sample metadata fields
View SamplesThe biological tumor samples (ie, breast tumor specimens) consisted of freshly frozen breast tumors from a population-based cohort of 315 women representing 65% of all breast cancers resected in Uppsala County, Sweden, from January 1, 1987 to December 31, 1989. Estrogen receptor status was determined by biochemical assay as part of the routine clinical procedure. An experienced pathologist determined the Elston-Ellis grades of the tumors, classifying the tumors into low, medium and high-grade tumors. The clinico-pathological characteristics accompanying each tumor include p53 status, ER status, tumor grade, lymph node status and patient age.
An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival.
No sample metadata fields
View SamplesHistological grading of breast cancer defines morphological subtypes informative of metastatic potential, although not without considerable inter-observer disagreement and clinical heterogeneity particularly among the moderately differentiated grade II (G2) tumors. We posited that a gene expression signature capable of discerning tumors of grade I (G1) and grade III (G3) histology might provide a more objective measure of grade with prognostic benefit for patients with moderately differentiated disease. To this end, we studied the expression profiles of 347 primary invasive breast tumors analyzed on Affymetrix microarrays. Using class prediction algorithms, we identified 264 robust grade-associated markers, six of which could accurately classify G1 and G3 tumors, and separate G2 tumors into two highly discriminant classes (termed G2a and G2b genetic grades) with patient survival outcomes highly similar to those with G1 and G3 histology, respectively. Statistical analysis of conventional clinical variables further distinguished G2a and G2b subtypes from each other, but also from histologic G1 and G3 tumors. In multivariate analyses, genetic grade was consistently found to be an independent prognostic indicator of disease recurrence comparable to that of lymph node status and tumor size. When incorporated into the Nottingham Prognostic Index, genetic grade enhanced detection of patients with less harmful tumors, likely to benefit little from adjuvant therapy. Our findings show that a genetic grade signature can improve prognosis and therapeutic planning for breast cancer patients, and support the view that low and high grade disease, as defined genetically, reflect independent pathobiological entities rather than a continuum of cancer progression. Three separate breast cancer cohorts were analyzed: 1) Uppsala (n=249), 2) Stockholm (n=58), 3) Singapore (n=40). The Uppsala and Singapore data can be accessed here. The Stockholm cohort data can be accessed at GEO Series GSE1456.
Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer.
Age, Disease stage
View SamplesTissue material was collected from all breast cancer patients receiving surgery at Karolinska Hospital from 1994-1996. Material was frozen immediatley on dry ice or in liquid nitrogen and stored in -70C freezers. This series contains expression data for n=159 tumors from which RNA could be collected in sufficient amounts and quality for analysis.
Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts.
No sample metadata fields
View SamplesBackground: Histologic grade in breast cancer provides clinically important prognostic information. However, 30%-60% of tumors are classified as histologic grade 2. This grade is associated with an intermediate risk of recurrence and is thus not informative for clinical decision making. We examined whether histologic grade was associated with gene expression profi les of breast cancers and whether such profi les could be used to improve histologic grading.
Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis.
Age, Disease stage
View SamplesThe aim of this study was to investigate if milk fat globule membrane (MFGM) enclosing the dairy fat influence peripheral blood mononuclear cells (PBMC) gene expression. This study was a 8-week single-blind, randomized, controlled isocaloric trial with two parallel groups including overweight (mean BMI: 28) adult women (n=30). All subjects consumed 40 g dairy fat per day either as cream (MFGM diet) or as butter oil (control diet).
Potential role of milk fat globule membrane in modulating plasma lipoproteins, gene expression, and cholesterol metabolism in humans: a randomized study.
Age, Specimen part, Time
View SamplesTranscriptome profile of whole tissue and cultured neuronal cells from the hippocampus and cortex from pooled littermate embryos (at 17-18 days post conception) of 2 mouse genotypes C57BL/6 congenic WT and Fmr1 KO.
Gene expression analysis in Fmr1KO mice identifies an immunological signature in brain tissue and mGluR5-related signaling in primary neuronal cultures.
Specimen part
View SamplesBackground: Transcription control of mitochondrial metabolism is essential for cellular function. A better understanding of this process will aid the elucidation of mitochondrial disorders, in particular of the many genetically unsolved cases of oxidative phosphorylation (OXPHOS) deficiency. Yet, to date only few studies have investigated nuclear gene regulation in the context of OXPHOS deficiency. In this study, we combined RNA sequencing of human complex I-deficient patient cells across 32 conditions of perturbed mitochondrial metabolism, with a comprehensive analysis of gene expression patterns, co-expression calculations and transcription factor binding sites. Results: Our analysis shows that OXPHOS genes have a significantly higher co-expression with each other than with other genes, including mitochondrial genes. We found no evidence for complex-specific mRNA expression regulation in the tested cell types and conditions: subunits of different OXPHOS complexes are similarly (co-)expressed and regulated by a common set of transcription factors. However, we did observe significant differences between the expression of OXPHOS complex subunits compared to assembly factors, suggesting divergent transcription programs. Furthermore, complex I co-expression calculations identified 684 genes with a likely role in OXPHOS biogenesis and function. Analysis of evolutionarily conserved transcription factor binding sites in the promoters of these genes revealed almost all known OXPHOS regulators (including GABP, NRF1/2, SP1, YY1, E-box factors) and a set of six yet uncharacterized candidate transcription factors (ELK1, KLF7, SP4, EHF, ZNF143, and EL2). Conclusions: OXPHOS genes share an expression program distinct from other mitochondrial genes, indicative of targeted regulation of this mitochondrial sub-process. Within the subset of OXPHOS genes we established a difference in expression between subunits and assembly factors. Most transcription regulators of genes that co-express with complex I are well-established factors for OXPHOS biogenesis. For the remaining six factors we here suggest for the first time a link with transcription regulation in OXPHOS deficiency. Overall design: RNA-SEQ of whole cell RNA in 2 control and 2 complex I deficient patient fibroblast cell lines treated with 4 compounds in duplicate, resulting in a total of 2x2x4x2=32 samples
Transcriptome analysis of complex I-deficient patients reveals distinct expression programs for subunits and assembly factors of the oxidative phosphorylation system.
No sample metadata fields
View SamplesDefective complex I (CI) is the most common type of oxidative phosphorylation (OXPHOS) disease in patients, with an incidence of 1 in 5,000 live births. Complex I deficiency can present in infancy or early adulthood and shows a wide variety of clinical manifestations, including Leigh syndrome, (cardio)myopathy, hypotonia, stroke, ataxia and lactic acidosis. A number of critical processes and factors, like superoxide production, calcium homeostasis, mitochondrial membrane potential and mitochondrial morphology, are known to be involved in clinical CI deficiency, but not all factors are yet known and a complete picture is lacking.
Transcriptional changes in OXPHOS complex I deficiency are related to anti-oxidant pathways and could explain the disturbed calcium homeostasis.
Sex, Age, Specimen part, Disease, Disease stage
View Samples