refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 590 results
Sort by

Filters

Technology

Platform

accession-icon SRP094587
Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury
  • organism-icon Mus musculus
  • sample-icon 53 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The meningeal space is occupied by a diverse repertoire of innate and adaptive immune cells. CNS injury elicits a rapid immune response that affects neuronal survival and recovery, but the role of meningeal inflammation in CNS injury remains poorly understood. Here we describe group 2 innate lymphoid cells (ILC2s) as a novel cell type resident in the healthy meninges that is activated following CNS injury. ILC2s are present throughout the naïve mouse meninges, though are concentrated around the dural sinuses, and have a unique transcriptional profile relative to lung ILC2s. After spinal cord injury, meningeal ILC2s are activated in an IL-33 dependent manner, producing type 2 cytokines. Using RNAseq, we characterized the gene programs that underlie the ILC2 activation state. Finally, addition of wild type lung-derived ILC2s into the meningeal space of IL-33R-/- animals improves recovery following spinal cord injury. These data characterize ILC2s as a novel meningeal cell type that responds to and functionally affects outcome after spinal cord injury, and could lead to new therapeutic insights for CNS injury or other neuroinflammatory conditions. Overall design: ILC2s were isolated from 10 week C57/Bl6 mice with and without spinal cord injury (1 day post injury). 5 mice were pooled per group, with meninges dissected, digested, and FACs sorted (CD45+/DAPI-/Lin–/St2+/Thy1+) directly into RNA lysis buffer.

Publication Title

Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE11408
Expression Data From HCMV-Infected Human Monocytes Study 2
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Human cytomegalovirus induces a pro-inflammatory monocyte following infection. To begin to address how HCMV induces these rapid changes in infected monocytes, we examined the transcriptome of infected monocytes. Global transcriptional profiling using cDNA microarrays revealed a significant number of pro-inflammatory genes were upregulated within 4 hours post infection.

Publication Title

Transcriptome analysis reveals human cytomegalovirus reprograms monocyte differentiation toward an M1 macrophage.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE82173
Primary breast tumors
  • organism-icon Homo sapiens
  • sample-icon 146 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Phosphoserine aminotransferase 1 is associated to poor outcome on tamoxifen therapy in recurrent breast cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41313
Expression data from breast cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 152 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Breast cancer is a genetically and phenotypically complex disease. To understand the role of microRNAs in this molecular complexity, we performed miRNA expression analysis in a cohort of molecularly well-characterized human breast cancer (BC) cell lines to discover miRNAs associated with the most common molecular subtypes and the most frequent genetic aberrations.Using a microarray carrying LNA modified oligonucleotide capture probes (Exiqon), expression levels of 725 human miRNAs were measured in 51 BC cell lines. MiRNA expression was explored by unsupervised cluster analysis and then associated with the molecular subtypes and genetic aberrations commonly present in breast cancer. Unsupervised cluster analysis using the most variably expressed miRNAs divided the 51 BC cell lines into a major and a minor cluster predominantly mirroring the luminal and basal intrinsic subdivision of BC cell lines. One hundred and thirteen miRNAs were differentially expressed between these two main clusters of which half were related to the ER-status of the cell lines. Forty miRNAs were differentially expressed between basal-like and normal-like/claudin-low cell lines. Within the luminal-group of cell lines, 39 miRNAs were associated with ERBB2 overexpression and 24 miRNAs with E-cadherin gene mutations, which are frequent in this subtype of BC cell lines. In contrast, 31 different miRNAs were associated with E-cadherin promoter hypermethylation, which, contrary to E-cadherin mutation, is exclusively observed in BC cell lines that are not of luminal origin. The differential expression of 30 miRNAs were associated with p16INK4 status while only a few differentially expressed miRNAs were associated with BRCA1, or PIK3CA/PTEN, TP53 mutation status of the cell lines (P-value < 0.05). Twelve miRNAs were associated with DNA copy number variation of the respective locus. Luminal-basal and epithelial-mesenchymal associated miRNAs determine the overall subdivision of miRNA transcriptome of BC cell lines. Specific sets of miRNAs were associated with ERBB2 overexpression, p16INK4aor E-cadherin mutation or E-cadherin methylation status, which implies that these miRNAs may contribute to the driver role of the genetic aberrations. Additionally, miRNAs, which are located in a genomic region showing recurrent genetic aberrations, may themselves play a driver role in breast carcinogenesis or contribute to a driver gene in their vicinity. In short, our study provides detailed molecular miRNA portraits of BC cell lines, which can be exploited for functional studies of clinically important miRNAs.

Publication Title

miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE82172
Expression data from primary breast tumors, M0 patients
  • organism-icon Homo sapiens
  • sample-icon 128 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Expression data were used to predict the activity status of diverse pathways, which were compared to Tamoxifen response

Publication Title

Phosphoserine aminotransferase 1 is associated to poor outcome on tamoxifen therapy in recurrent breast cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE82171
Expression data from primary breast tumors
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Expression data were used to predict the activity status of diverse pathways, which were compared to Tamoxifen response

Publication Title

Phosphoserine aminotransferase 1 is associated to poor outcome on tamoxifen therapy in recurrent breast cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP124960
Timeseries of small RNA and mRNA expression during zebrafish heart regeneration
  • organism-icon Danio rerio
  • sample-icon 168 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Adult zebrafish are capable of regenerating cardiac tissue following ventricular resection within 30 days. We profiled both small RNA and mRNA expression in uninjured (0dpa), 1, 3, 7, 14, 21 and 30 days post amputation to study biological processes orchestrate each stage of regeneration. Overall design: Small and mRNA gene expression profiling during 0, 1, 3, 7, 14, 21 and 30 days post ventricular resection.

Publication Title

RegenDbase: a comparative database of noncoding RNA regulation of tissue regeneration circuits across multiple taxa.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE61341
Functional genomic analysis reveals overlapping and distinct features of chronologically long-lived yeast populations
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The chronological lifespan (CLS) of Saccharomyces cerevisiae is defined as the number days that non-dividing cells remain viable, typically in stationary phase cultures or in water. CLS is extended by restricting glucose in the starting cultures, and is considered a form of caloric restriction (CR). Through a previous genetic screen our lab determined that deleting components of the de novo purine biosynthesis pathway also significantly increased CLS. Significant similarities in gene expression profiles between calorie restricted WT cells and a non-restricted ade4 mutant suggested the possibility of common gene expression biomarkers of all chronologically long lived cells that could also provide insights into general mechanisms of lifespan extension. We have identified additional growth conditions that extend CLS of WT cells, including supplementation of the media with isonicotinamide (INAM), a known sirtuin activator, or by supplementation with a concentrate collected from the expired media of a calorie restricted yeast culture, presumably due to an as yet unidentified longevity factor. Using these varied methods to extend CLS, we compared gene expression profiles in the aging cells (at day 8) to identify functionally relevant biomarkers of longevity. Nineteen genes were differentially regulated in all 4 of the long-lived populations relative to wild type. Of these 19 genes, viable haploid deletion mutants were available for 16 of them, and 12 were found to have a significant impact on CLS.

Publication Title

Functional genomic analysis reveals overlapping and distinct features of chronologically long-lived yeast populations.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14020
Metastases of breast cancer
  • organism-icon Homo sapiens
  • sample-icon 57 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Comparisons among breast cancer metastases at different organs revealed distinct microenvironments as characterized by cytokine content.

Publication Title

Latent bone metastasis in breast cancer tied to Src-dependent survival signals.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14018
Metastases of breast cancer (U133A)
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Comparisons among breast cancer metastases at different organs revealed distinct microenvironments as characterized by cytokine content.

Publication Title

Latent bone metastasis in breast cancer tied to Src-dependent survival signals.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact